// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $CHANNEL_SUBTILE = 4 $assert CHANNEL_TILE % CHANNEL_SUBTILE == 0 $CHANNEL_ROUND = 4 $assert MIDDLE_PASS_TILE <= LAST_PASS_TILE $assert FIRST_PASS_TILE >= 1 $assert MIDDLE_PASS_TILE >= 1 $assert LAST_PASS_TILE >= 1 $assert ACCUMULATORS >= 1 $assert ACTIVATION != "MINMAX" or ARCH in ["ARM", "X86", "RELAXED"] $assert not FMA or ARCH == "RELAXED" $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include #include #include $assert ACTIVATION in ["LINEAR", "RELU", "MINMAX"] $if ACTIVATION == "MINMAX": $ WASM_F32X4_MIN={"ARM": "wasm_f32x4_min", "X86": "wasm_f32x4_pmin", "RELAXED": "wasm_f32x4_relaxed_min"}[ARCH] $ WASM_F32X4_MAX={"ARM": "wasm_f32x4_max", "X86": "wasm_f32x4_pmax", "RELAXED": "wasm_f32x4_relaxed_max"}[ARCH] $ACTIVATION_SUFFIX = {"LINEAR": ""}.get(ACTIVATION, "_" + ACTIVATION.lower()) $ISA = "wasmsimd" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH != "RELAXED") else "wasmrelaxedsimd" $ARCH_SUFFIX = "" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH == "RELAXED") else "_" + ("fma" if FMA else ARCH.lower()) $PARAMS = {"LINEAR": "xnn_f32_default_params", "RELU": "xnn_f32_relu_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] void xnn_f32_dwconv${ACTIVATION_SUFFIX}_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__${ISA}${ARCH_SUFFIX}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t channels, size_t output_width, const float** input, const float* weights, float* output, intptr_t input_stride, size_t output_increment, size_t input_offset, const float* zero, size_t kernel_size, float* buffer, const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(channels != 0); assert(output_width != 0); assert(kernel_size > ${FIRST_PASS_TILE}); $if ACTIVATION == "MINMAX": const v128_t vmin = wasm_v128_load64_splat(params->wasmsimd.min); const v128_t vmax = wasm_v128_load64_splat(params->wasmsimd.max); $elif ACTIVATION == "RELU": const v128_t vzero = wasm_i32x4_const_splat(0); do { const float* w = weights; // First pass to process ${FIRST_PASS_TILE} inputs. { float* b = buffer; $for K in range(FIRST_PASS_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } input += ${FIRST_PASS_TILE}; // Process c channels and write to buffer. $if CHANNEL_TILE == 4: size_t c = 0; for (; c < channels; c += 4) { v128_t vacc0p0 = wasm_v128_load(w); $for K in range(FIRST_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += ${CHANNEL_TILE}; const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 wasm_v128_store(b, vacc0p0); b += ${CHANNEL_TILE}; } $else: size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 4): $if C == 0: v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(w); $else: v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(w + ${C}); $for K in range(FIRST_PASS_TILE): $for C in range(0, CHANNEL_TILE, 4): $if C == 0: const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K}); $else: const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $elif FMA: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:4]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 4): $if C == 0: wasm_v128_store(b, vacc${ABC[C:C+4]}p0); $else: wasm_v128_store(b + ${C}, vacc${ABC[C:C+4]}p0); b += ${CHANNEL_TILE}; } $if CHANNEL_TILE == 8: if (c != 0) { v128_t vacc0p0 = wasm_v128_load(w); $for K in range(FIRST_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += 4; const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * 4}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); w += ${(FIRST_PASS_TILE + 1) * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 wasm_v128_store(b, vacc0p0); b += 4; } $else: for (; c != 0; c -= 4) { v128_t vacc0p0 = wasm_v128_load(w); $for K in range(FIRST_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += 4; const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * 4}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); w += ${(FIRST_PASS_TILE + 1) * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 wasm_v128_store(b, vacc0p0); b += 4; } } // Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration. for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) { float* b = buffer; $for K in range(MIDDLE_PASS_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } input += ${MIDDLE_PASS_TILE}; $if CHANNEL_TILE == 4: size_t c = 0; for (; c < channels; c += 4) { v128_t vacc0p0 = wasm_v128_load(b); $for K in range(MIDDLE_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += ${CHANNEL_TILE}; $if K == 0: const v128_t vk${K}x0123 = wasm_v128_load(w); $else: const v128_t vk${K}x0123 = wasm_v128_load(w + ${K * CHANNEL_TILE}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); w += ${MIDDLE_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 wasm_v128_store(b, vacc0p0); b += ${CHANNEL_TILE}; } $else: size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 4): $if C == 0: v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b); $else: v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b + ${C}); $for K in range(MIDDLE_PASS_TILE): $for C in range(0, CHANNEL_TILE, 4): $if C == 0: const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K}); $else: const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): $if K == 0 and C == 0: const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w); $else: const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${K * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $elif FMA: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); w += ${MIDDLE_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:4]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 4): $if C == 0: wasm_v128_store(b, vacc${ABC[C:C+4]}p0); $else: wasm_v128_store(b + ${C}, vacc${ABC[C:C+4]}p0); b += ${CHANNEL_TILE}; } $if CHANNEL_TILE == 8: if (c != 0) { v128_t vacc0p0 = wasm_v128_load(b); $for K in range(MIDDLE_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += 4; $if K == 0: const v128_t vk${K}x0123 = wasm_v128_load(w); $else: const v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); w += ${MIDDLE_PASS_TILE * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 wasm_v128_store(b, vacc0p0); b += 4; } $else: for (; c != 0; c -= 4) { v128_t vacc0p0 = wasm_v128_load(b); $for K in range(MIDDLE_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += 4; $if K == 0: const v128_t vk${K}x0123 = wasm_v128_load(w); $else: const v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); w += ${MIDDLE_PASS_TILE * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 wasm_v128_store(b, vacc0p0); b += 4; } } // Last pass to process up to ${LAST_PASS_TILE} inputs. { float* b = buffer; $for K in range(0, LAST_PASS_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } size_t c = channels; $if CHANNEL_TILE > 4: for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 4): $if C == 0: v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b); $else: v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(b + ${C}); b += ${CHANNEL_TILE}; $for K in range(LAST_PASS_TILE): $for C in range(0, CHANNEL_TILE, 4): $if C == 0: const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K}); $else: const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): $if K == 0 and C == 0: v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w); $else: v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${K * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $elif FMA: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); w += ${LAST_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:4]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $if ACTIVATION == "MINMAX": $for C in range(0, CHANNEL_TILE, 4): v128_t vacc${ABC[C:C+4]} = ${WASM_F32X4_MAX}(vacc${ABC[C:C+4]}p0, vmin); $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]} = ${WASM_F32X4_MIN}(vacc${ABC[C:C+4]}, vmax); $elif ACTIVATION == "RELU": $for C in range(0, CHANNEL_TILE, 4): const v128_t vacc${ABC[C:C+4]} = ${WASM_F32X4_MAX}(vacc${ABC[C:C+4]}p0, vzero); $elif ACTIVATION == "LINEAR": $for C in range(0, CHANNEL_TILE, 4): const v128_t vacc${ABC[C:C+4]} = vacc${ABC[C:C+4]}p0; $for C in range(0, CHANNEL_TILE, 4): $if C == 0: wasm_v128_store(output, vacc${ABC[C:C+4]}); $else: wasm_v128_store(output + ${C}, vacc${ABC[C:C+4]}); output += ${CHANNEL_TILE}; } for (; c >= 4; c -= 4) { v128_t vacc0p0 = wasm_v128_load(b); b += 4; $for K in range(LAST_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += 4; $if K == 0: v128_t vk${K}x0123 = wasm_v128_load(w); $else: v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); $if CHANNEL_TILE > 4: w += ${LAST_PASS_TILE * 4}; $else: w += ${LAST_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 $if ACTIVATION == "MINMAX": v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vmin); vacc0 = ${WASM_F32X4_MIN}(vacc0, vmax); $elif ACTIVATION == "RELU": const v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vzero); $elif ACTIVATION == "LINEAR": const v128_t vacc0 = vacc0p0; wasm_v128_store(output, vacc0); output += 4; } if XNN_UNLIKELY(c != 0) { v128_t vacc0p0 = wasm_v128_load(b); $for K in range(LAST_PASS_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); $if K == 0: v128_t vk${K}x0123 = wasm_v128_load(w); $else: v128_t vk${K}x0123 = wasm_v128_load(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: v128_t vacc0p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $elif FMA: vacc0p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0p${K % ACCUMULATORS}); $else: vacc0p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0p${K % ACCUMULATORS}); $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:4]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0p${A} = wasm_f32x4_add(vacc0p${A}, vacc0p${A + ACC_SLICE}); $ACC_SLICE *= 2 $if ACTIVATION == "MINMAX": v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vmin); vacc0 = ${WASM_F32X4_MIN}(vacc0, vmax); $elif ACTIVATION == "RELU": v128_t vacc0 = ${WASM_F32X4_MAX}(vacc0p0, vzero); $elif ACTIVATION == "LINEAR": v128_t vacc0 = vacc0p0; if (c & 2) { wasm_v128_store64_lane(output, vacc0, 0); vacc0 = wasm_v64x2_shuffle(vacc0, vacc0, 1, 1); output += 2; } if (c & 1) { wasm_v128_store32_lane(output, vacc0, 0); output += 1; } } } input = (const float**) ((uintptr_t) input + input_stride); output = (float*) ((uintptr_t) output + output_increment); } while (--output_width != 0); }