test / src /f16-gavgpool /multipass-f16c.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
9.46 kB
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 3
$assert ROW_SUBTILE >= 3
$assert ROW_SUBTILE <= ROW_TILE
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/gavgpool.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
void xnn_f16_gavgpool_minmax_ukernel_${ROW_TILE}p${ROW_SUBTILE}x__f16c_c${CHANNEL_TILE}(
size_t rows,
size_t channels,
const void* input,
size_t input_stride,
const void* zero,
void* buffer,
void* output,
const union xnn_f16_scaleminmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(rows > ${ROW_TILE});
assert(channels != 0);
const uint16_t* i0 = input;
$for M in range(1, ROW_TILE):
const uint16_t* i${M} = (const uint16_t*) ((uintptr_t) i${M-1} + input_stride);
const size_t input_increment = ${ROW_TILE} * input_stride - round_up_po2(channels, 8) * sizeof(uint16_t);
uint16_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 8 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 8 else "c = doz(c, %d)") % CHANNEL_TILE}) {
$for M in range(2):
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi${M}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); i${M} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi2x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); i2 += 8;
__m128i vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for M in range(2, ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
_mm_store_si128((__m128i*) b, vacc${ABC[C:C+8]}); b += 8;
}
$if CHANNEL_TILE > 8:
if XNN_UNLIKELY(c != 0) {
do {
$for M in range(3):
const __m256 vi${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); i${M} += 8;
__m128i vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(vi0x${ABC[0:8]}, vi1x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
$for M in range(2, ROW_TILE):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
_mm_store_si128((__m128i*) b, vacc${ABC[0:8]}); b += 8;
c = doz(c, 8);
} while (c != 0);
}
for (rows -= ${ROW_TILE}; rows > ${ROW_SUBTILE}; rows -= ${ROW_SUBTILE}) {
$for M in range(ROW_SUBTILE):
i${M} = (const uint16_t*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
uint16_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 8 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 8 else "c = doz(c, %d)") % CHANNEL_TILE}) {
__m128i vacc${ABC[0:8]} = _mm_loadu_si128((const __m128i*) b);
$for C in range(8, CHANNEL_TILE, 8):
__m128i vacc${ABC[C:C+8]} = _mm_loadu_si128((const __m128i*) (b + ${C}));
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi0x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
_mm_store_si128((__m128i*) b, vacc${ABC[C:C+8]}); b += 8;
}
$if CHANNEL_TILE > 8:
if XNN_UNLIKELY(c != 0) {
do {
__m128i vacc${ABC[0:8]} = _mm_loadu_si128((const __m128i*) b);
const __m256 vi0x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
_mm_store_si128((__m128i*) b, vacc${ABC[0:8]});
b += 8;
c = doz(c, 8);
} while (c != 0);
}
}
i0 = (const uint16_t*) ((uintptr_t) i${ROW_TILE - ROW_SUBTILE} + input_increment);
$for M in range(1, ROW_SUBTILE):
i${M} = (const uint16_t*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
$if M % 2 == 1:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = (const uint16_t*) zero;
}
$else:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = (const uint16_t*) zero;
}
uint16_t* o = (uint16_t*) output;
const __m256 vscale = _mm256_load_ps(params->avx.scale);
const __m256 vmin = _mm256_load_ps(params->avx.min);
const __m256 vmax = _mm256_load_ps(params->avx.max);
for (; channels >= ${CHANNEL_TILE}; channels -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
__m128i vacc${ABC[C:C+8]} = _mm_loadu_si128((const __m128i*) buffer); buffer = (uint16_t*) buffer + 8;
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vi0x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_mul_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vscale), _MM_FROUND_TO_NEAREST_INT);
$for C in range(0, CHANNEL_TILE, 8):
__m256 vout${ABC[C:C+8]} = _mm256_max_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vmin);
$for C in range(0, CHANNEL_TILE, 8):
vout${ABC[C:C+8]} = _mm256_min_ps(vout${ABC[C:C+8]}, vmax);
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
$for C in range(8, CHANNEL_TILE, 8):
_mm_storeu_si128((__m128i*) ((uint16_t*) o + ${C}), _mm256_cvtps_ph(vout${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT));
o += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(channels != 0) {
${"do " if CHANNEL_TILE > 8 else ""}{
__m128i vacc${ABC[0:8]} = _mm_loadu_si128((const __m128i*) buffer); buffer = (uint16_t*) buffer + 8;
const __m256 vi0x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8;
$for M in range(ROW_TILE):
$if M + 1 != ROW_TILE:
const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); i${M+1} += 8;
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT);
vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_mul_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vscale), _MM_FROUND_TO_NEAREST_INT);
__m256 vout${ABC[0:8]} = _mm256_max_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vmin);
vout${ABC[0:8]} = _mm256_min_ps(vout${ABC[0:8]}, vmax);
$if CHANNEL_TILE > 8:
if XNN_LIKELY(channels >= 8) {
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT));
o += 8;
channels -= 8;
} else {
__m128i vh${ABC[0:8]} = _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT);
if (channels & 4) {
_mm_storel_epi64((__m128i*) o, vh${ABC[0:8]});
o += 4;
vh${ABC[0:8]} = _mm_unpackhi_epi64(vh${ABC[0:8]}, vh${ABC[0:8]});
}
if (channels & 2) {
_mm_storeu_si32(o, vh${ABC[0:8]});
o += 2;
vh${ABC[0:8]} = _mm_srli_epi64(vh${ABC[0:8]}, 32);
}
if (channels & 1) {
*o = (uint16_t) _mm_extract_epi16(vh${ABC[0:8]}, 0);
}
channels = 0;
}
$else:
__m128i vh${ABC[0:8]} = _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT);
if (channels & 4) {
_mm_storel_epi64((__m128i*) o, vh${ABC[0:8]});
o += 4;
vh${ABC[0:8]} = _mm_unpackhi_epi64(vh${ABC[0:8]}, vh${ABC[0:8]});
}
if (channels & 2) {
_mm_storeu_si32(o, vh${ABC[0:8]});
o += 2;
vh${ABC[0:8]} = _mm_srli_epi64(vh${ABC[0:8]}, 32);
}
if (channels & 1) {
*o = (uint16_t) _mm_extract_epi16(vh${ABC[0:8]}, 0);
}
}${" while (channels != 0);" if CHANNEL_TILE > 8 else ""}
}
}