AmirlyPhd's picture
AmirlyPhd/final_V1-distilbert-text-classification-model
406f23c verified
|
raw
history blame
4.06 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: final_V1-distilbert-text-classification-model
    results: []

final_V1-distilbert-text-classification-model

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1494
  • Accuracy: 0.9672
  • F1: 0.8312
  • Precision: 0.8275
  • Recall: 0.8357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6662 0.11 50 1.6945 0.2888 0.0820 0.1958 0.1341
0.7494 0.22 100 0.6947 0.8034 0.4962 0.4949 0.5054
0.2779 0.33 150 0.4631 0.8980 0.6685 0.6550 0.6829
0.2204 0.44 200 0.3938 0.8999 0.6686 0.6659 0.6758
0.137 0.55 250 0.4153 0.9065 0.6707 0.6537 0.6898
0.1931 0.66 300 0.3093 0.9166 0.7089 0.7728 0.7046
0.1356 0.76 350 0.3384 0.9152 0.6904 0.8123 0.6978
0.1065 0.87 400 0.4172 0.9144 0.7233 0.7804 0.7174
0.105 0.98 450 0.4521 0.8852 0.7078 0.7342 0.7051
0.1275 1.09 500 0.2837 0.9262 0.7365 0.7927 0.7275
0.0754 1.2 550 0.3979 0.9180 0.7164 0.8039 0.7133
0.0861 1.31 600 0.1506 0.9604 0.8259 0.8247 0.8280
0.0514 1.42 650 0.1397 0.9664 0.8277 0.8264 0.8293
0.0536 1.53 700 0.1566 0.9642 0.8279 0.8255 0.8308
0.0351 1.64 750 0.1804 0.9620 0.8276 0.8251 0.8312
0.0862 1.75 800 0.1445 0.9655 0.8314 0.8307 0.8322
0.0461 1.86 850 0.1492 0.9669 0.8306 0.8291 0.8324
0.0663 1.97 900 0.2054 0.9604 0.8292 0.8299 0.8295
0.0482 2.07 950 0.1498 0.9655 0.8294 0.8272 0.8324
0.0299 2.18 1000 0.1657 0.9650 0.8292 0.8269 0.8321
0.0348 2.29 1050 0.1473 0.9686 0.8310 0.8291 0.8332
0.0283 2.4 1100 0.1470 0.9694 0.8333 0.8297 0.8376
0.0115 2.51 1150 0.1496 0.9691 0.8336 0.8317 0.8358
0.004 2.62 1200 0.1671 0.9650 0.8301 0.8280 0.8329
0.0054 2.73 1250 0.1560 0.9694 0.8333 0.8325 0.8343
0.0217 2.84 1300 0.1553 0.9696 0.8334 0.8326 0.8345
0.0054 2.95 1350 0.1603 0.9691 0.8332 0.8324 0.8343

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2