AmelieSchreiber's picture
Update README.md
97fadc1
|
raw
history blame
5.45 kB
---
license: mit
language:
- en
library_name: transformers
tags:
- esm
- esm2
- protein language model
- pLM
- biology
- multilabel sequence classification
metrics:
- f1
- precision
- recall
---
# ESM-2 Fine-tuned CAFA-5
## ESM-2 for Protein Function Prediction
This is an experimental model fine-tuned from the
[esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) model
for multi-label classification. In particular, the model is fine-tuned on the CAFA-5 protein sequence dataset available
[here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5). More precisely, the `train_sequences.fasta` file is the
list of protein sequences that were trained on, and the
`train_terms.tsv` file contains the gene ontology protein function labels for each protein sequence. For more details on using
ESM-2 models for multi-label sequence classification, [see here](https://huggingface.co/docs/transformers/model_doc/esm).
Due to the potentially complicated class weighting necessary for the hierarchical ontology, further fine-tuning will be necessary.
## Training
The training/validation split of the data for this model is available [here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5_train_val_split_1).
Macro
```
Epoch 5/5
Training loss: 0.06925179701577704
Validation Precision: 0.9821931289359406
Validation Recall: 0.999934039607066
Validation MultilabelF1Score: 0.9907671213150024
Validation AUROC: 0.5831210653861931
```
Micro
```
Validation Precision: 0.9822020821532512
Validation Recall: 0.9999363677941498
```
## Using the model
First, download the `train_sequences.fasta` file and the `train_terms.tsv` file, and provide the local paths in the code below:
```python
import os
import numpy as np
import torch
from transformers import AutoTokenizer, EsmForSequenceClassification, AdamW
from torch.nn.functional import binary_cross_entropy_with_logits
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, precision_score, recall_score
# from accelerate import Accelerator
from Bio import SeqIO
# Step 1: Data Preprocessing (Replace with your local paths)
fasta_file = "/Users/amelieschreiber/.cursor-tutor/projects/python/cafa5/cafa-5-protein-function-prediction/Train/train_sequences.fasta"
tsv_file = "/Users/amelieschreiber/.cursor-tutor/projects/python/cafa5/cafa-5-protein-function-prediction/Train/train_terms.tsv"
fasta_data = {}
tsv_data = {}
for record in SeqIO.parse(fasta_file, "fasta"):
fasta_data[record.id] = str(record.seq)
with open(tsv_file, 'r') as f:
for line in f:
parts = line.strip().split("\t")
tsv_data[parts[0]] = parts[1:]
# tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
seq_length = 1022
# tokenized_data = tokenizer(list(fasta_data.values()), padding=True, truncation=True, return_tensors="pt", max_length=seq_length)
unique_terms = list(set(term for terms in tsv_data.values() for term in terms))
```
Second, downlowd the file `go-basic.obo` [from here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5)
and store the file locally, then provide the local path in the the code below:
```python
import torch
from transformers import AutoTokenizer, EsmForSequenceClassification
from sklearn.metrics import precision_recall_fscore_support
# 1. Parsing the go-basic.obo file
def parse_obo_file(file_path):
with open(file_path, 'r') as f:
data = f.read().split("[Term]")
terms = []
for entry in data[1:]:
lines = entry.strip().split("\n")
term = {}
for line in lines:
if line.startswith("id:"):
term["id"] = line.split("id:")[1].strip()
elif line.startswith("name:"):
term["name"] = line.split("name:")[1].strip()
elif line.startswith("namespace:"):
term["namespace"] = line.split("namespace:")[1].strip()
elif line.startswith("def:"):
term["definition"] = line.split("def:")[1].split('"')[1]
terms.append(term)
return terms
parsed_terms = parse_obo_file("go-basic.obo") # Replace `go-basic.obo` with your path
# 2. Load the saved model and tokenizer
model_path = "AmelieSchreiber/esm2_t6_8M_finetuned_cafa5"
loaded_model = EsmForSequenceClassification.from_pretrained(model_path)
loaded_tokenizer = AutoTokenizer.from_pretrained(model_path)
# 3. The predict_protein_function function
def predict_protein_function(sequence, model, tokenizer, go_terms):
inputs = tokenizer(sequence, return_tensors="pt", padding=True, truncation=True, max_length=1022)
model.eval()
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.sigmoid(outputs.logits)
predicted_indices = torch.where(predictions > 0.05)[1].tolist()
functions = []
for idx in predicted_indices:
term_id = unique_terms[idx] # Use the unique_terms list from your training script
for term in go_terms:
if term["id"] == term_id:
functions.append(term["name"])
break
return functions
# 4. Predicting protein function for an example sequence
example_sequence = "MAYLGSLVQRRLELASGDRLEASLGVGSELDVRGDRVKAVGSLDLEEGRLEQAGVSMA" # Replace with your protein sequence
predicted_functions = predict_protein_function(example_sequence, loaded_model, loaded_tokenizer, parsed_terms)
print(predicted_functions)
```