metadata
license: mit
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
- roc_auc
- matthews_correlation
library_name: peft
pipeline_tag: token-classification
tags:
- protein language model
- post translational modification
- biology
- proteins
- ESM-2
ESM-2 for Post Translational Modification
This is a LoRA finetuned version of esm2_t12_35M_UR50D
for predicting post translational modification sites.
Metrics
"eval_loss": 0.4661065936088562,
"eval_accuracy": 0.9876599555715365,
"eval_auc": 0.8673592596422711,
"eval_precision": 0.14941997670219148,
"eval_recall": 0.7463955099754822
"eval_f1": 0.24899413187145658,
"eval_mcc": 0.3305508498121041,
Using the Model
To use this model, run the following:
!pip install transformers -q
!pip install peft -q
from transformers import AutoModelForTokenClassification, AutoTokenizer
from peft import PeftModel
import torch
# Path to the saved LoRA model
model_path = "AmelieSchreiber/esm2_t12_35M_ptm_lora_2100K"
# ESM2 base model
base_model_path = "facebook/esm2_t12_35M_UR50D"
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Load the tokenizer
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
# Tokenize the sequence
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
# Define labels
id2label = {
0: "No ptm site",
1: "ptm site"
}
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))