metadata
license: apache-2.0
base_model: AmberYifan/mistral-safe-sft-full
tags:
- generated_from_trainer
model-index:
- name: mistral-sft-spin-ultrafeedback
results: []
mistral-sft-spin-ultrafeedback
This model is a fine-tuned version of AmberYifan/mistral-safe-sft-full on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3972
- Rewards/real: 22.1059
- Rewards/generated: -7.2907
- Rewards/accuracies: 0.9643
- Rewards/margins: 29.3967
- Logps/generated: -562.6890
- Logps/real: -250.2120
- Logits/generated: -1.9480
- Logits/real: -2.0005
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 12
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
---|---|---|---|---|---|---|---|---|---|---|---|
0.595 | 0.1203 | 1000 | 0.5124 | 11.3158 | 1.6608 | 0.9464 | 9.6550 | -473.1739 | -358.1132 | -2.4781 | -2.4648 |
0.6451 | 0.2405 | 2000 | 0.4696 | 17.0313 | 2.1793 | 0.9613 | 14.8520 | -467.9886 | -300.9576 | -2.2454 | -2.2894 |
0.6942 | 0.3608 | 3000 | 0.4032 | 18.1009 | -4.0003 | 0.9732 | 22.1012 | -529.7845 | -290.2621 | -2.2503 | -2.3049 |
0.5971 | 0.4810 | 4000 | 0.4349 | 20.4856 | -0.4965 | 0.9554 | 20.9821 | -494.7470 | -266.4150 | -2.2408 | -2.2874 |
0.418 | 0.6013 | 5000 | 0.4742 | 21.3899 | -1.9856 | 0.9613 | 23.3755 | -509.6375 | -257.3721 | -2.2078 | -2.2568 |
0.4272 | 0.7215 | 6000 | 0.4182 | 21.5687 | -2.6705 | 0.9583 | 24.2392 | -516.4866 | -255.5838 | -2.0241 | -2.0560 |
0.408 | 0.8418 | 7000 | 0.3871 | 21.3882 | -9.6508 | 0.9732 | 31.0390 | -586.2899 | -257.3895 | -1.9645 | -2.0343 |
0.5954 | 0.9620 | 8000 | 0.3972 | 22.1059 | -7.2907 | 0.9643 | 29.3967 | -562.6890 | -250.2120 | -1.9480 | -2.0005 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1