AmberYifan's picture
Model save
5ab9c6b verified
metadata
license: apache-2.0
base_model: AmberYifan/mistral-safe-sft-full
tags:
  - generated_from_trainer
model-index:
  - name: mistral-sft-spin-ultrafeedback
    results: []

mistral-sft-spin-ultrafeedback

This model is a fine-tuned version of AmberYifan/mistral-safe-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3972
  • Rewards/real: 22.1059
  • Rewards/generated: -7.2907
  • Rewards/accuracies: 0.9643
  • Rewards/margins: 29.3967
  • Logps/generated: -562.6890
  • Logps/real: -250.2120
  • Logits/generated: -1.9480
  • Logits/real: -2.0005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 12
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/real Rewards/generated Rewards/accuracies Rewards/margins Logps/generated Logps/real Logits/generated Logits/real
0.595 0.1203 1000 0.5124 11.3158 1.6608 0.9464 9.6550 -473.1739 -358.1132 -2.4781 -2.4648
0.6451 0.2405 2000 0.4696 17.0313 2.1793 0.9613 14.8520 -467.9886 -300.9576 -2.2454 -2.2894
0.6942 0.3608 3000 0.4032 18.1009 -4.0003 0.9732 22.1012 -529.7845 -290.2621 -2.2503 -2.3049
0.5971 0.4810 4000 0.4349 20.4856 -0.4965 0.9554 20.9821 -494.7470 -266.4150 -2.2408 -2.2874
0.418 0.6013 5000 0.4742 21.3899 -1.9856 0.9613 23.3755 -509.6375 -257.3721 -2.2078 -2.2568
0.4272 0.7215 6000 0.4182 21.5687 -2.6705 0.9583 24.2392 -516.4866 -255.5838 -2.0241 -2.0560
0.408 0.8418 7000 0.3871 21.3882 -9.6508 0.9732 31.0390 -586.2899 -257.3895 -1.9645 -2.0343
0.5954 0.9620 8000 0.3972 22.1059 -7.2907 0.9643 29.3967 -562.6890 -250.2120 -1.9480 -2.0005

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1