AlvinOctaH's picture
Upload tokenizer
f024d38 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-indo-transcript
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: id
          split: test
          args: id
        metrics:
          - type: wer
            value: 0.5533562822719449
            name: Wer

wav2vec2-large-xls-r-300m-indo-transcript

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1328
  • Wer: 0.5534

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.8447 6.4 400 1.0105 0.7504
0.2777 12.8 800 0.9857 0.6325
0.0963 19.2 1200 1.0872 0.5723
0.0554 25.6 1600 1.1328 0.5534

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3