metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-indo-transcript
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: id
split: test
args: id
metrics:
- type: wer
value: 0.5533562822719449
name: Wer
wav2vec2-large-xls-r-300m-indo-transcript
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1328
- Wer: 0.5534
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.8447 | 6.4 | 400 | 1.0105 | 0.7504 |
0.2777 | 12.8 | 800 | 0.9857 | 0.6325 |
0.0963 | 19.2 | 1200 | 1.0872 | 0.5723 |
0.0554 | 25.6 | 1600 | 1.1328 | 0.5534 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3