|
import math
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
|
|
from torch import nn
|
|
from torch.cuda.amp import autocast
|
|
from transformers.utils import logging
|
|
from transformers.activations import ACT2FN
|
|
from transformers.pytorch_utils import Conv1D
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutput
|
|
|
|
from .configuration_linglong import LingLongConfig
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class LingLongAttention(nn.Module):
|
|
|
|
def __init__(self, config, layer_idx=None):
|
|
super().__init__()
|
|
|
|
n_position = config.n_position
|
|
self.register_buffer(
|
|
'bias',
|
|
torch.tril(torch.ones((n_position, n_position), dtype=torch.bool)).view(
|
|
1, 1, n_position, n_position
|
|
),
|
|
persistent=False,
|
|
)
|
|
self.register_buffer('masked_bias', torch.tensor(-1e4), persistent=False)
|
|
|
|
self.n_embd = config.n_embd
|
|
self.n_head = config.n_head
|
|
self.head_dim = self.n_embd // self.n_head
|
|
self.split_size = self.n_embd
|
|
if self.head_dim * self.n_head != self.n_embd:
|
|
raise ValueError(
|
|
f'`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.n_embd} and `num_heads`:'
|
|
f' {self.n_head}).'
|
|
)
|
|
|
|
self.scale_attn_weights = config.scale_attn_weights
|
|
|
|
|
|
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
|
self.layer_idx = layer_idx
|
|
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
|
|
|
self.c_attn = Conv1D(3 * self.n_embd, self.n_embd)
|
|
self.c_proj = Conv1D(self.n_embd, self.n_embd)
|
|
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
|
|
self.mode = config.attn_mode
|
|
self.stride = config.attn_stride
|
|
self.c = config.attn_c
|
|
self.causal_mask = None
|
|
|
|
def _causal_mask(self, query_length, key_length):
|
|
return self.bias[:, :, key_length - query_length: key_length, :key_length]
|
|
|
|
def _sparse_causal_mask(self, query_length, key_length):
|
|
layout = torch.zeros([key_length, key_length], dtype=torch.bool, device=self.bias.device)
|
|
for idx in range(self.c):
|
|
layout[:, (self.stride - 1 - idx)::self.stride] = 1
|
|
for q_idx in range(key_length):
|
|
row = q_idx // self.stride
|
|
layout[q_idx, row * self.stride:(row + 1) * self.stride] = 1
|
|
|
|
layout[q_idx, q_idx + 1:] = 0
|
|
return layout[(key_length - query_length):].view(1, 1, query_length, key_length)
|
|
|
|
def _attn(self, query, key, value, attention_mask=None):
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
|
|
|
if self.scale_attn_weights:
|
|
attn_weights = attn_weights / torch.full(
|
|
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
|
)
|
|
|
|
|
|
if self.scale_attn_by_inverse_layer_idx:
|
|
attn_weights = attn_weights / float(self.layer_idx + 1)
|
|
|
|
|
|
query_length, key_length = query.size(-2), key.size(-2)
|
|
if self.causal_mask is None or self.causal_mask.size() != torch.Size([1, 1, query_length, key_length]):
|
|
if self.mode == 'sparse' and self.layer_idx % 2 != 0:
|
|
self.causal_mask = self._sparse_causal_mask(query_length, key_length)
|
|
else:
|
|
self.causal_mask = self._causal_mask(query_length, key_length)
|
|
mask_value = torch.finfo(attn_weights.dtype).min
|
|
|
|
|
|
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
|
|
attn_weights = torch.where(self.causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
|
|
|
if attention_mask is not None:
|
|
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
|
|
attn_weights = attn_weights.type(value.dtype)
|
|
attn_weights = self.attn_dropout(attn_weights)
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None):
|
|
|
|
bsz, num_heads, q_seq_len, dk = query.size()
|
|
_, _, k_seq_len, _ = key.size()
|
|
|
|
|
|
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
|
|
|
|
|
scale_factor = 1.0
|
|
if self.scale_attn_weights:
|
|
scale_factor /= float(value.size(-1)) ** 0.5
|
|
|
|
if self.scale_attn_by_inverse_layer_idx:
|
|
scale_factor /= float(self.layer_idx + 1)
|
|
|
|
|
|
with autocast(enabled=False):
|
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
|
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
|
|
|
|
|
query_length, key_length = query.size(-2), key.size(-2)
|
|
if self.causal_mask is None or self.causal_mask.size() != torch.Size([1, 1, query_length, key_length]):
|
|
if self.mode == 'sparse' and self.layer_idx % 2 != 0:
|
|
self.causal_mask = self._sparse_causal_mask(query_length, key_length)
|
|
else:
|
|
self.causal_mask = self._causal_mask(query_length, key_length)
|
|
mask_value = torch.finfo(attn_weights.dtype).min
|
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
|
attn_weights = torch.where(self.causal_mask, attn_weights, mask_value)
|
|
|
|
if attention_mask is not None:
|
|
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
|
|
|
|
if attn_weights.dtype != torch.float32:
|
|
raise RuntimeError('Error with upcasting, attn_weights does not have dtype torch.float32.')
|
|
attn_weights = attn_weights.type(value.dtype)
|
|
attn_weights = self.attn_dropout(attn_weights)
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
@staticmethod
|
|
def _split_heads(tensor, num_heads, attn_head_size):
|
|
"""
|
|
Splits hidden_size dim into attn_head_size and num_heads
|
|
"""
|
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
|
tensor = tensor.view(new_shape)
|
|
return tensor.permute(0, 2, 1, 3)
|
|
|
|
@staticmethod
|
|
def _merge_heads(tensor, num_heads, attn_head_size):
|
|
"""
|
|
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
|
"""
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
|
return tensor.view(new_shape)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
layer_past=None,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
):
|
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
|
query = self._split_heads(query, self.n_head, self.head_dim)
|
|
key = self._split_heads(key, self.n_head, self.head_dim)
|
|
value = self._split_heads(value, self.n_head, self.head_dim)
|
|
|
|
if layer_past is not None:
|
|
past_key, past_value = layer_past
|
|
key = torch.cat((past_key, key), dim=-2)
|
|
value = torch.cat((past_value, value), dim=-2)
|
|
|
|
if use_cache is True:
|
|
present = (key, value)
|
|
else:
|
|
present = None
|
|
|
|
if self.reorder_and_upcast_attn:
|
|
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask)
|
|
else:
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask)
|
|
|
|
attn_output = self._merge_heads(attn_output, self.n_head, self.head_dim)
|
|
attn_output = self.c_proj(attn_output)
|
|
attn_output = self.resid_dropout(attn_output)
|
|
|
|
outputs = (attn_output, present)
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
class LingLongMLP(nn.Module):
|
|
|
|
def __init__(self, intermediate_size, config):
|
|
super().__init__()
|
|
n_embd = config.n_embd
|
|
self.c_fc = Conv1D(intermediate_size, n_embd)
|
|
self.c_proj = Conv1D(n_embd, intermediate_size)
|
|
self.act = ACT2FN[config.activation_function]
|
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.c_fc(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.c_proj(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class LingLongBlock(nn.Module):
|
|
|
|
def __init__(self, config, layer_idx=None):
|
|
super().__init__()
|
|
n_embd = config.n_embd
|
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * n_embd
|
|
|
|
self.ln_1 = nn.LayerNorm(n_embd, eps=config.layer_norm_epsilon)
|
|
self.attn = LingLongAttention(config, layer_idx=layer_idx)
|
|
self.ln_2 = nn.LayerNorm(n_embd, eps=config.layer_norm_epsilon)
|
|
|
|
self.mlp = LingLongMLP(inner_dim, config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
layer_past=None,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
output_attentions=False,
|
|
):
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_outputs = self.attn(
|
|
hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
attn_output = attn_outputs[0]
|
|
outputs = attn_outputs[1:]
|
|
|
|
hidden_states = attn_output + residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
|
|
hidden_states = residual + feed_forward_hidden_states
|
|
|
|
if use_cache:
|
|
outputs = (hidden_states,) + outputs
|
|
else:
|
|
outputs = (hidden_states,) + outputs[1:]
|
|
|
|
return outputs
|
|
|
|
|
|
class LingLongPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = LingLongConfig
|
|
base_model_prefix = 'transformer'
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ['LingLongBlock']
|
|
_skip_keys_device_placement = 'past_key_values'
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights."""
|
|
if isinstance(module, (nn.Linear, Conv1D)):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, p in module.named_parameters():
|
|
if name == 'c_proj.weight':
|
|
|
|
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
|
|
|
|
|
class LingLongModel(LingLongPreTrainedModel):
|
|
|
|
def __init__(self, config: LingLongConfig):
|
|
super().__init__(config)
|
|
self.n_embd = config.n_embd
|
|
self.wte = nn.Embedding(config.vocab_size, self.n_embd)
|
|
self.wpe = nn.Embedding(config.n_position, self.n_embd)
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
self.h = nn.ModuleList([LingLongBlock(config, layer_idx=i) for i in range(config.n_layer)])
|
|
self.ln_f = nn.LayerNorm(self.n_embd, eps=config.layer_norm_epsilon)
|
|
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.wte
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.wte = new_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor | None = None,
|
|
past_key_values: tuple[tuple[torch.Tensor]] | None = None,
|
|
attention_mask: torch.FloatTensor | None = None,
|
|
position_ids: torch.LongTensor | None = None,
|
|
inputs_embeds: torch.FloatTensor | None = None,
|
|
use_cache: bool | None = None,
|
|
output_attentions: bool | None = None,
|
|
output_hidden_states: bool | None = None,
|
|
return_dict: bool | None = None,
|
|
) -> tuple | BaseModelOutputWithPast:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time.')
|
|
elif input_ids is not None:
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
input_shape = input_ids.size()
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
batch_size = input_ids.shape[0]
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
batch_size = inputs_embeds.shape[0]
|
|
else:
|
|
raise ValueError('You have to specify either input_ids or inputs_embeds.')
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if past_key_values is None:
|
|
past_length = 0
|
|
past_key_values = tuple([None] * len(self.h))
|
|
else:
|
|
past_length = past_key_values[0][0].size(-2)
|
|
if position_ids is None:
|
|
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
|
|
if attention_mask is not None:
|
|
if batch_size <= 0:
|
|
raise ValueError('batch_size has to be defined and > 0.')
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype)
|
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.wte(input_ids)
|
|
position_embeds = self.wpe(position_ids)
|
|
hidden_states = inputs_embeds + position_embeds
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
|
|
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
|
|
logger.warning_once(
|
|
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
|
|
)
|
|
use_cache = False
|
|
|
|
presents = () if use_cache else None
|
|
all_self_attentions = () if output_attentions else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
outputs = self._gradient_checkpointing_func(
|
|
block.__call__,
|
|
hidden_states,
|
|
None,
|
|
attention_mask,
|
|
use_cache,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
outputs = block(
|
|
hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
if use_cache is True:
|
|
presents = presents + (outputs[1],)
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
|
|
if v is not None
|
|
)
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=presents,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
|
|
class LingLongForCausalLM(LingLongPreTrainedModel):
|
|
_tied_weights_keys = ['lm_head.weight']
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.transformer = LingLongModel(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
|
|
|
if past_key_values:
|
|
past_length = past_key_values[0][0].shape[2]
|
|
|
|
|
|
if input_ids.shape[1] > past_length:
|
|
remove_prefix_length = past_length
|
|
else:
|
|
|
|
remove_prefix_length = input_ids.shape[1] - 1
|
|
|
|
input_ids = input_ids[:, remove_prefix_length:]
|
|
|
|
attention_mask = kwargs.get('attention_mask', None)
|
|
position_ids = kwargs.get('position_ids', None)
|
|
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1]:]
|
|
else:
|
|
position_ids = None
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {'inputs_embeds': inputs_embeds}
|
|
else:
|
|
model_inputs = {'input_ids': input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
'past_key_values': past_key_values,
|
|
'use_cache': kwargs.get('use_cache'),
|
|
'position_ids': position_ids,
|
|
'attention_mask': attention_mask,
|
|
}
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor | None = None,
|
|
past_key_values: tuple[tuple[torch.Tensor]] | None = None,
|
|
attention_mask: torch.FloatTensor | None = None,
|
|
position_ids: torch.LongTensor | None = None,
|
|
inputs_embeds: torch.FloatTensor | None = None,
|
|
labels: torch.LongTensor | None = None,
|
|
use_cache: bool | None = None,
|
|
output_attentions: bool | None = None,
|
|
output_hidden_states: bool | None = None,
|
|
return_dict: bool | None = None,
|
|
) -> tuple | CausalLMOutput:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
labels = labels.to(lm_logits.device)
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = nn.CrossEntropyLoss()
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return CausalLMOutput(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
@staticmethod
|
|
def _reorder_cache(
|
|
past_key_values: tuple[tuple[torch.Tensor]],
|
|
beam_idx: torch.Tensor,
|
|
**kwargs,
|
|
) -> tuple[tuple[torch.Tensor]]:
|
|
"""
|
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
|
beam_idx at every generation step.
|
|
"""
|
|
|
|
return tuple(
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
|
for layer_past in past_key_values
|
|
)
|
|
|