AlphaRandy commited on
Commit
c64d9d1
1 Parent(s): d8f550e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -6
README.md CHANGED
@@ -1,5 +1,10 @@
1
  ---
 
2
  language:
 
 
 
 
3
  - en
4
  inference:
5
  parameters:
@@ -7,8 +12,15 @@ inference:
7
  widget:
8
  - messages:
9
  - role: user
10
- content: Hey Bud
11
  ---
 
 
 
 
 
 
 
12
 
13
  ## Instruction format
14
 
@@ -42,7 +54,7 @@ In the Transformers library, one can use [chat templates](https://huggingface.co
42
  ```python
43
  from transformers import AutoModelForCausalLM, AutoTokenizer
44
 
45
- model_id = "AlphaRandy/WhelanChatBot"
46
  tokenizer = AutoTokenizer.from_pretrained(model_id)
47
 
48
  model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
@@ -72,11 +84,17 @@ Note `float16` precision only works on GPU devices
72
  + import torch
73
  from transformers import AutoModelForCausalLM, AutoTokenizer
74
 
75
- model_id = "AlphaRandy/WhelanChatBot"
76
  tokenizer = AutoTokenizer.from_pretrained(model_id)
77
 
78
  + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
79
 
 
 
 
 
 
 
80
  input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
81
 
82
  outputs = model.generate(input_ids, max_new_tokens=20)
@@ -93,7 +111,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
93
  + import torch
94
  from transformers import AutoModelForCausalLM, AutoTokenizer
95
 
96
- model_id = "AlphaRandy/WhelanChatBot"
97
  tokenizer = AutoTokenizer.from_pretrained(model_id)
98
 
99
  + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
@@ -121,7 +139,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
121
  + import torch
122
  from transformers import AutoModelForCausalLM, AutoTokenizer
123
 
124
- model_id = "AlphaRandy/WhelanChatBot"
125
  tokenizer = AutoTokenizer.from_pretrained(model_id)
126
 
127
  + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True, device_map="auto")
@@ -137,4 +155,13 @@ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cud
137
  outputs = model.generate(input_ids, max_new_tokens=20)
138
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
139
  ```
140
- </details>
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  language:
4
+ - fr
5
+ - it
6
+ - de
7
+ - es
8
  - en
9
  inference:
10
  parameters:
 
12
  widget:
13
  - messages:
14
  - role: user
15
+ content: What is your favorite condiment?
16
  ---
17
+ # Model Card for Mixtral-8x7B
18
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
19
+
20
+ For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
21
+
22
+ ## Warning
23
+ This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
24
 
25
  ## Instruction format
26
 
 
54
  ```python
55
  from transformers import AutoModelForCausalLM, AutoTokenizer
56
 
57
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
58
  tokenizer = AutoTokenizer.from_pretrained(model_id)
59
 
60
  model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
 
84
  + import torch
85
  from transformers import AutoModelForCausalLM, AutoTokenizer
86
 
87
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
88
  tokenizer = AutoTokenizer.from_pretrained(model_id)
89
 
90
  + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
91
 
92
+ messages = [
93
+ {"role": "user", "content": "What is your favourite condiment?"},
94
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
95
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
96
+ ]
97
+
98
  input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
99
 
100
  outputs = model.generate(input_ids, max_new_tokens=20)
 
111
  + import torch
112
  from transformers import AutoModelForCausalLM, AutoTokenizer
113
 
114
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
115
  tokenizer = AutoTokenizer.from_pretrained(model_id)
116
 
117
  + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
 
139
  + import torch
140
  from transformers import AutoModelForCausalLM, AutoTokenizer
141
 
142
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
143
  tokenizer = AutoTokenizer.from_pretrained(model_id)
144
 
145
  + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True, device_map="auto")
 
155
  outputs = model.generate(input_ids, max_new_tokens=20)
156
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
157
  ```
158
+ </details>
159
+
160
+ ## Limitations
161
+
162
+ The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
163
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
164
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
165
+
166
+ # The Mistral AI Team
167
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.