Lumina-Next-T2I / README.md
PommesPeter's picture
Update README.md
d0097c9 verified
|
raw
history blame
9.34 kB
---
license: apache-2.0
---
# Lumina-Next-T2I
The `Lumina-Next-T2I` model that uses Next-DiT with a 2B parameters model as well as using [Gemma-2B](https://huggingface.co/google/gemma-2b) as a text encoder. Compared with `Lumina-T2I`, it has faster inference speed, richer generation style, and more multilingual support, etc.
Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai.
- Generation Model: Next-DiT
- Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b)
- VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae)
## ๐Ÿ“ฐ News
- [2024-5-12] ๐Ÿš€๐Ÿš€๐Ÿš€ We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model.
## ๐ŸŽฎ Model Zoo
More checkpoints of our model will be released soon~
| Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL |
| ---------- | ----------------------- | ------------ | -----------|-------------- |
| 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I) |
## Installation
Before installation, ensure that you have a working ``nvcc``
```bash
# The command should work and show the same version number as in our case. (12.1 in our case).
nvcc --version
```
On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of
``gcc`` is available
```bash
# The command should work and show a version of at least 6.0.
# If not, consult distro-specific tutorials to obtain a newer version or build manually.
gcc --version
```
Downloading Lumina-T2X repo from github:
```bash
git clone https://github.com/Alpha-VLLM/Lumina-T2X
```
### 1. Create a conda environment and install PyTorch
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
```bash
conda create -n Lumina_T2X -y
conda activate Lumina_T2X
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
```
### 2. Install dependencies
```bash
pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click
```
or you can use
```bash
cd lumina_next_t2i
pip install -r requirements.txt
```
### 3. Install ``flash-attn``
```bash
pip install flash-attn --no-build-isolation
```
### 4. Install [nvidia apex](https://github.com/nvidia/apex) (optional)
>[!Warning]
> While Apex can improve efficiency, it is *not* a must to make Lumina-T2X work.
>
> Note that Lumina-T2X works smoothly with either:
> + Apex not installed at all; OR
> + Apex successfully installed with CUDA and C++ extensions.
>
> However, it will fail when:
> + A Python-only build of Apex is installed.
>
> If the error `No module named 'fused_layer_norm_cuda'` appears, it typically means you are using a Python-only build of Apex. To resolve this, please run `pip uninstall apex`, and Lumina-T2X should then function correctly.
You can clone the repo and install following the official guidelines (note that we expect a full
build, i.e., with CUDA and C++ extensions)
```bash
pip install ninja
git clone https://github.com/NVIDIA/apex
cd apex
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
# otherwise
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
## Inference
To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site.
### CLI
1. Install Lumina-T2I
```bash
pip install -e .
```
2. Prepare the pretrained model
โญโญ (Recommanded) you can use huggingface_cli downloading our model:
```bash
huggingface-cli download --resume-download Alpha-VLLM/Lumina-T2I --local-dir /path/to/ckpt
```
or using git for cloning the model you want to use:
```bash
git clone https://huggingface.co/Alpha-VLLM/Lumina-T2I
```
1. Setting your personal inference configuration
Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure:
> `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
```yaml
- settings:
model:
ckpt: "/path/to/ckpt" # if ckpt is "", you should use `--ckpt` for passing model path when using `lumina` cli.
ckpt_lm: "" # if ckpt is "", you should use `--ckpt_lm` for passing model path when using `lumina` cli.
token: "" # if LLM is a huggingface gated repo, you should input your access token from huggingface and when token is "", you should `--token` for accessing the model.
transport:
path_type: "Linear" # option: ["Linear", "GVP", "VP"]
prediction: "velocity" # option: ["velocity", "score", "noise"]
loss_weight: "velocity" # option: [None, "velocity", "likelihood"]
sample_eps: 0.1
train_eps: 0.2
ode:
atol: 1e-6 # Absolute tolerance
rtol: 1e-3 # Relative tolerance
reverse: false # option: true or false
likelihood: false # option: true or false
sde:
sampling_method: "Euler" # option: ["Euler", "Heun"]
diffusion_form: "sigma" # option: ["constant", "SBDM", "sigma", "linear", "decreasing", "increasing-decreasing"]
diffusion_norm: 1.0 # range: 0-1
last_step: Mean # option: [None, "Mean", "Tweedie", "Euler"]
last_step_size: 0.04
infer:
resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"]
num_sampling_steps: 60 # range: 1-1000
cfg_scale: 4. # range: 1-20
solver: "euler" # option: ["euler", "dopri5", "dopri8"]
t_shift: 4 # range: 1-20 (int only)
ntk_scaling: true # option: true or false
proportional_attn: true # option: true or false
seed: 0 # rnage: any number
```
- model:
- `ckpt`: lumina-t2i checkpoint path from [huggingface repo](https://huggingface.co/Alpha-VLLM/Lumina-T2I) containing `consolidated*.pth` and `model_args.pth`.
- `ckpt_lm`: LLM checkpoint.
- `token`: huggingface access token for accessing gated repo.
- transport:
- `path_type`: the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).
- `prediction`: the prediction model for the transport dynamics.
- `loss_weight`: the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting
- `sample_eps`: sampling in the transport model.
- `train_eps`: training to stabilize the learning process.
- ode:
- `atol`: Absolute tolerance for the ODE solver. (options: ["Linear", "GVP", "VP"])
- `rtol`: Relative tolerance for the ODE solver. (option: ["velocity", "score", "noise"])
- `reverse`: run the ODE solver in reverse. (option: [None, "velocity", "likelihood"])
- `likelihood`: Enable calculation of likelihood during the ODE solving process.
- sde
- `sampling-method`: the numerical method used for sampling the stochastic differential equation: 'Euler' for simplicity or 'Heun' for improved accuracy.
- `diffusion-form`: form of diffusion coefficient in the SDE
- `diffusion-norm`: Normalizes the diffusion coefficient, affecting the scale of the stochastic component.
- `last-step`: form of last step taken in the SDE
- `last-step-size`: size of the last step taken
- infer
- `resolution`: generated image resolution.
- `num_sampling_steps`: sampling step for generating image.
- `cfg_scale`: classifier-free guide scaling factor
- `solver`: solver for image generation.
- `t_shift`: time shift factor.
- `ntk_scaling`: ntk rope scaling factor.
- `proportional_attn`: Whether to use proportional attention.
- `seed`: random initialization seeds.
1. Run with CLI
inference command:
```bash
lumina_next infer -c <config_path> <caption_here> <output_dir>
```
e.g. Demo command:
```bash
cd lumina_next_t2i
lumina_next infer -c "config/infer/settings.yaml" "a snow man of ..." "./outputs"
```
### Web Demo
To host a local gradio demo for interactive inference, run the following command:
```bash
# `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth`
# default
python -u demo.py --ckpt "/path/to/ckpt"
# the demo by default uses bf16 precision. to switch to fp32:
python -u demo.py --ckpt "/path/to/ckpt" --precision fp32
# use ema model
python -u demo.py --ckpt "/path/to/ckpt" --ema
```