Redflashing commited on
Commit
e114a8f
1 Parent(s): e36ebf2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -20
README.md CHANGED
@@ -4,24 +4,20 @@ language:
4
  - en
5
  pipeline_tag: text-generation
6
  inference: false
7
-
8
  ---
9
-
10
  # Baichuan-13B-Instruction
11
 
12
- ![](https://ai-studio-static-online.cdn.bcebos.com/3582d0f23d814b68ae429f2204de44555150da8691844e34aad80275671756e5)
13
 
14
  <!-- Provide a quick summary of what the model is/does. -->
15
 
16
  ## 介绍
17
-
18
  Baichuan-13B-Instruction 为 Baichuan-13B 系列模型进行指令微调后的版本,预训练模型可见 [Baichuan-13B-Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base)。
19
 
20
 
21
  ## 使用方式
22
 
23
  如下是一个使用Baichuan-13B-Chat进行对话的示例,正确输出为"乔戈里峰。世界第二高峰———乔戈里峰西方登山者称其为k2峰,海拔高度是8611米,位于喀喇昆仑山脉的中巴边境上"
24
-
25
  ```python
26
  import torch
27
  from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -40,14 +36,12 @@ print(response)
40
  Baichuan-13B 支持 int8 和 int4 量化,用户只需在推理代码中简单修改两行即可实现。请注意,如果是为了节省显存而进行量化,应加载原始精度模型到 CPU 后再开始量化;避免在 `from_pretrained` 时添加 `device_map='auto'` 或者其它会导致把原始精度模型直接加载到 GPU 的行为的参数。
41
 
42
  使用 int8 量化 (To use int8 quantization):
43
-
44
  ```python
45
  model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
46
  model = model.quantize(8).cuda()
47
  ```
48
 
49
  同样的,如需使用 int4 量化 (Similarly, to use int4 quantization):
50
-
51
  ```python
52
  model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
53
  model = model.quantize(4).cuda()
@@ -68,7 +62,6 @@ model = model.quantize(4).cuda()
68
  | Baichuan-13B | 25.4 |
69
 
70
  具体参数和见下表
71
-
72
  | 模型名称 | 隐含层维度 | 层数 | 头数 | 词表大小 | 总参数量 | 训练数据(tokens) | 位置编码 | 最大长度 |
73
  | ------------ | ---------- | ---- | ---- | -------- | -------------- | ------------------ | ----------------------------------------- | -------- |
74
  | Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | [RoPE](https://arxiv.org/abs/2104.09864) | 4,096 |
@@ -88,18 +81,18 @@ model = model.quantize(4).cuda()
88
 
89
  ## [CMMLU](https://github.com/haonan-li/CMMLU)
90
 
91
- | Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
92
- | ---------------------------- | :-------: | :--------: | :-------------: | :------: | :------------: | :------: |
93
- | Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 |
94
- | Vicuna-13B | 31.8 | 36.2 | 37.6 | 39.5 | 34.3 | 36.3 |
95
- | Chinese-Alpaca-Plus-13B | 29.8 | 33.4 | 33.2 | 37.9 | 32.1 | 33.4 |
96
- | Chinese-LLaMA-Plus-13B | 28.1 | 33.1 | 35.4 | 35.1 | 33.5 | 33.0 |
97
- | Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 |
98
- | LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 |
99
- | moss-moon-003-base (16B) | 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 |
100
- | Baichuan-13B-Base | 41.7 | 61.1 | 59.8 | 59.0 | 56.4 | 55.3 |
101
- | Baichuan-13B-Chat | 42.8 | **62.6** | **59.7** | **59.0** | **56.1** | **55.8** |
102
- | **Baichuan-13B-Instruction** | **44.50** | 61.16 | 59.07 | 58.34 | 55.55 | 55.61 |
103
 
104
  | Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
105
  | ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: |
 
4
  - en
5
  pipeline_tag: text-generation
6
  inference: false
 
7
  ---
 
8
  # Baichuan-13B-Instruction
9
 
10
+ ![](./alpachino.png)
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
 
14
  ## 介绍
 
15
  Baichuan-13B-Instruction 为 Baichuan-13B 系列模型进行指令微调后的版本,预训练模型可见 [Baichuan-13B-Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base)。
16
 
17
 
18
  ## 使用方式
19
 
20
  如下是一个使用Baichuan-13B-Chat进行对话的示例,正确输出为"乔戈里峰。世界第二高峰———乔戈里峰西方登山者称其为k2峰,海拔高度是8611米,位于喀喇昆仑山脉的中巴边境上"
 
21
  ```python
22
  import torch
23
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
36
  Baichuan-13B 支持 int8 和 int4 量化,用户只需在推理代码中简单修改两行即可实现。请注意,如果是为了节省显存而进行量化,应加载原始精度模型到 CPU 后再开始量化;避免在 `from_pretrained` 时添加 `device_map='auto'` 或者其它会导致把原始精度模型直接加载到 GPU 的行为的参数。
37
 
38
  使用 int8 量化 (To use int8 quantization):
 
39
  ```python
40
  model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
41
  model = model.quantize(8).cuda()
42
  ```
43
 
44
  同样的,如需使用 int4 量化 (Similarly, to use int4 quantization):
 
45
  ```python
46
  model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True)
47
  model = model.quantize(4).cuda()
 
62
  | Baichuan-13B | 25.4 |
63
 
64
  具体参数和见下表
 
65
  | 模型名称 | 隐含层维度 | 层数 | 头数 | 词表大小 | 总参数量 | 训练数据(tokens) | 位置编码 | 最大长度 |
66
  | ------------ | ---------- | ---- | ---- | -------- | -------------- | ------------------ | ----------------------------------------- | -------- |
67
  | Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | [RoPE](https://arxiv.org/abs/2104.09864) | 4,096 |
 
81
 
82
  ## [CMMLU](https://github.com/haonan-li/CMMLU)
83
 
84
+ | Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
85
+ | ---------------------------------------------------------- | :-------: | :--------: | :-------------: | :------: | :------------: | :------: |
86
+ | Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 |
87
+ | Vicuna-13B | 31.8 | 36.2 | 37.6 | 39.5 | 34.3 | 36.3 |
88
+ | Chinese-Alpaca-Plus-13B | 29.8 | 33.4 | 33.2 | 37.9 | 32.1 | 33.4 |
89
+ | Chinese-LLaMA-Plus-13B | 28.1 | 33.1 | 35.4 | 35.1 | 33.5 | 33.0 |
90
+ | Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 |
91
+ | LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 |
92
+ | moss-moon-003-base (16B) | 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 |
93
+ | Baichuan-13B-Base | 41.7 | 61.1 | 59.8 | 59.0 | 56.4 | 55.3 |
94
+ | Baichuan-13B-Chat | 42.8 | **62.6** | **59.7** | **59.0** | **56.1** | **55.8** |
95
+ | **Baichuan-13B-Instruction** | **44.50** | 61.16 | 59.07 | 58.34 | 55.55 | 55.61 |
96
 
97
  | Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average |
98
  | ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: |