Init (#1)
Browse files- Init (00cb9c04bbf5639a1ebcf9c6a18849008e3dbaee)
- Upload files (748be87653a72bcd943b3b67296565b26d71793e)
- Create gme_inference.py (22270be06dd84a446686b37ab573392089f4c9b0)
- Update gme_inference.py (535408889784412d6f8886c67119190f5b7ab117)
- Update README.md (845c61fa06d42e9796680363dcebc18880c57855)
Co-authored-by: Xin Zhang <izhx@users.noreply.huggingface.co>
- README.md +3710 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- config.json +47 -0
- generation_config.json +14 -0
- gme_inference.py +329 -0
- merges.txt +0 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +736 -0
- preprocessor_config.json +19 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +143 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,3710 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen2-VL-2B-Instruct
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
tags:
|
9 |
+
- mteb
|
10 |
+
- sentence-transformers
|
11 |
+
- transformers
|
12 |
+
- Qwen2-VL
|
13 |
+
- sentence-similarity
|
14 |
+
- vidore
|
15 |
+
model-index:
|
16 |
+
- name: gme-Qwen2-VL-2B-Instruct
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: Classification
|
20 |
+
dataset:
|
21 |
+
type: mteb/amazon_counterfactual
|
22 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
23 |
+
config: en
|
24 |
+
split: test
|
25 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
26 |
+
metrics:
|
27 |
+
- type: accuracy
|
28 |
+
value: 72.55223880597015
|
29 |
+
- type: ap
|
30 |
+
value: 35.01515316721116
|
31 |
+
- type: f1
|
32 |
+
value: 66.44086070814382
|
33 |
+
- task:
|
34 |
+
type: Classification
|
35 |
+
dataset:
|
36 |
+
type: mteb/amazon_polarity
|
37 |
+
name: MTEB AmazonPolarityClassification
|
38 |
+
config: default
|
39 |
+
split: test
|
40 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
41 |
+
metrics:
|
42 |
+
- type: accuracy
|
43 |
+
value: 96.75819999999999
|
44 |
+
- type: ap
|
45 |
+
value: 95.51009242092881
|
46 |
+
- type: f1
|
47 |
+
value: 96.75713119357414
|
48 |
+
- task:
|
49 |
+
type: Classification
|
50 |
+
dataset:
|
51 |
+
type: mteb/amazon_reviews_multi
|
52 |
+
name: MTEB AmazonReviewsClassification (en)
|
53 |
+
config: en
|
54 |
+
split: test
|
55 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
56 |
+
metrics:
|
57 |
+
- type: accuracy
|
58 |
+
value: 61.971999999999994
|
59 |
+
- type: f1
|
60 |
+
value: 60.50745575187704
|
61 |
+
- task:
|
62 |
+
type: Retrieval
|
63 |
+
dataset:
|
64 |
+
type: mteb/arguana
|
65 |
+
name: MTEB ArguAna
|
66 |
+
config: default
|
67 |
+
split: test
|
68 |
+
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
|
69 |
+
metrics:
|
70 |
+
- type: map_at_1
|
71 |
+
value: 36.272999999999996
|
72 |
+
- type: map_at_10
|
73 |
+
value: 52.782
|
74 |
+
- type: map_at_100
|
75 |
+
value: 53.339999999999996
|
76 |
+
- type: map_at_1000
|
77 |
+
value: 53.342999999999996
|
78 |
+
- type: map_at_3
|
79 |
+
value: 48.4
|
80 |
+
- type: map_at_5
|
81 |
+
value: 50.882000000000005
|
82 |
+
- type: mrr_at_1
|
83 |
+
value: 36.984
|
84 |
+
- type: mrr_at_10
|
85 |
+
value: 53.052
|
86 |
+
- type: mrr_at_100
|
87 |
+
value: 53.604
|
88 |
+
- type: mrr_at_1000
|
89 |
+
value: 53.607000000000006
|
90 |
+
- type: mrr_at_3
|
91 |
+
value: 48.613
|
92 |
+
- type: mrr_at_5
|
93 |
+
value: 51.159
|
94 |
+
- type: ndcg_at_1
|
95 |
+
value: 36.272999999999996
|
96 |
+
- type: ndcg_at_10
|
97 |
+
value: 61.524
|
98 |
+
- type: ndcg_at_100
|
99 |
+
value: 63.796
|
100 |
+
- type: ndcg_at_1000
|
101 |
+
value: 63.869
|
102 |
+
- type: ndcg_at_3
|
103 |
+
value: 52.456
|
104 |
+
- type: ndcg_at_5
|
105 |
+
value: 56.964000000000006
|
106 |
+
- type: precision_at_1
|
107 |
+
value: 36.272999999999996
|
108 |
+
- type: precision_at_10
|
109 |
+
value: 8.926
|
110 |
+
- type: precision_at_100
|
111 |
+
value: 0.989
|
112 |
+
- type: precision_at_1000
|
113 |
+
value: 0.1
|
114 |
+
- type: precision_at_3
|
115 |
+
value: 21.407999999999998
|
116 |
+
- type: precision_at_5
|
117 |
+
value: 15.049999999999999
|
118 |
+
- type: recall_at_1
|
119 |
+
value: 36.272999999999996
|
120 |
+
- type: recall_at_10
|
121 |
+
value: 89.25999999999999
|
122 |
+
- type: recall_at_100
|
123 |
+
value: 98.933
|
124 |
+
- type: recall_at_1000
|
125 |
+
value: 99.502
|
126 |
+
- type: recall_at_3
|
127 |
+
value: 64.225
|
128 |
+
- type: recall_at_5
|
129 |
+
value: 75.249
|
130 |
+
- task:
|
131 |
+
type: Clustering
|
132 |
+
dataset:
|
133 |
+
type: mteb/arxiv-clustering-p2p
|
134 |
+
name: MTEB ArxivClusteringP2P
|
135 |
+
config: default
|
136 |
+
split: test
|
137 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
138 |
+
metrics:
|
139 |
+
- type: v_measure
|
140 |
+
value: 52.45236368396085
|
141 |
+
- task:
|
142 |
+
type: Clustering
|
143 |
+
dataset:
|
144 |
+
type: mteb/arxiv-clustering-s2s
|
145 |
+
name: MTEB ArxivClusteringS2S
|
146 |
+
config: default
|
147 |
+
split: test
|
148 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
149 |
+
metrics:
|
150 |
+
- type: v_measure
|
151 |
+
value: 46.83781937870832
|
152 |
+
- task:
|
153 |
+
type: Reranking
|
154 |
+
dataset:
|
155 |
+
type: mteb/askubuntudupquestions-reranking
|
156 |
+
name: MTEB AskUbuntuDupQuestions
|
157 |
+
config: default
|
158 |
+
split: test
|
159 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
160 |
+
metrics:
|
161 |
+
- type: map
|
162 |
+
value: 60.653430349851746
|
163 |
+
- type: mrr
|
164 |
+
value: 74.28736314470387
|
165 |
+
- task:
|
166 |
+
type: STS
|
167 |
+
dataset:
|
168 |
+
type: mteb/biosses-sts
|
169 |
+
name: MTEB BIOSSES
|
170 |
+
config: default
|
171 |
+
split: test
|
172 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
173 |
+
metrics:
|
174 |
+
- type: cos_sim_pearson
|
175 |
+
value: 89.18568151905953
|
176 |
+
- type: cos_sim_spearman
|
177 |
+
value: 86.47666922475281
|
178 |
+
- type: euclidean_pearson
|
179 |
+
value: 87.25416218056225
|
180 |
+
- type: euclidean_spearman
|
181 |
+
value: 86.47666922475281
|
182 |
+
- type: manhattan_pearson
|
183 |
+
value: 87.04960508086356
|
184 |
+
- type: manhattan_spearman
|
185 |
+
value: 86.73992823533615
|
186 |
+
- task:
|
187 |
+
type: Classification
|
188 |
+
dataset:
|
189 |
+
type: mteb/banking77
|
190 |
+
name: MTEB Banking77Classification
|
191 |
+
config: default
|
192 |
+
split: test
|
193 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
194 |
+
metrics:
|
195 |
+
- type: accuracy
|
196 |
+
value: 80.2435064935065
|
197 |
+
- type: f1
|
198 |
+
value: 79.44078343737895
|
199 |
+
- task:
|
200 |
+
type: Clustering
|
201 |
+
dataset:
|
202 |
+
type: mteb/biorxiv-clustering-p2p
|
203 |
+
name: MTEB BiorxivClusteringP2P
|
204 |
+
config: default
|
205 |
+
split: test
|
206 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
207 |
+
metrics:
|
208 |
+
- type: v_measure
|
209 |
+
value: 44.68220155432257
|
210 |
+
- task:
|
211 |
+
type: Clustering
|
212 |
+
dataset:
|
213 |
+
type: mteb/biorxiv-clustering-s2s
|
214 |
+
name: MTEB BiorxivClusteringS2S
|
215 |
+
config: default
|
216 |
+
split: test
|
217 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
218 |
+
metrics:
|
219 |
+
- type: v_measure
|
220 |
+
value: 40.666150477589284
|
221 |
+
- task:
|
222 |
+
type: Retrieval
|
223 |
+
dataset:
|
224 |
+
type: BeIR/cqadupstack
|
225 |
+
name: MTEB CQADupstackAndroidRetrieval
|
226 |
+
config: default
|
227 |
+
split: test
|
228 |
+
revision: f46a197baaae43b4f621051089b82a364682dfeb
|
229 |
+
metrics:
|
230 |
+
- type: map_at_1
|
231 |
+
value: 30.623
|
232 |
+
- type: map_at_10
|
233 |
+
value: 40.482
|
234 |
+
- type: map_at_100
|
235 |
+
value: 41.997
|
236 |
+
- type: map_at_1000
|
237 |
+
value: 42.135
|
238 |
+
- type: map_at_3
|
239 |
+
value: 37.754
|
240 |
+
- type: map_at_5
|
241 |
+
value: 39.031
|
242 |
+
- type: mrr_at_1
|
243 |
+
value: 37.482
|
244 |
+
- type: mrr_at_10
|
245 |
+
value: 46.311
|
246 |
+
- type: mrr_at_100
|
247 |
+
value: 47.211999999999996
|
248 |
+
- type: mrr_at_1000
|
249 |
+
value: 47.27
|
250 |
+
- type: mrr_at_3
|
251 |
+
value: 44.157999999999994
|
252 |
+
- type: mrr_at_5
|
253 |
+
value: 45.145
|
254 |
+
- type: ndcg_at_1
|
255 |
+
value: 37.482
|
256 |
+
- type: ndcg_at_10
|
257 |
+
value: 46.142
|
258 |
+
- type: ndcg_at_100
|
259 |
+
value: 51.834
|
260 |
+
- type: ndcg_at_1000
|
261 |
+
value: 54.164
|
262 |
+
- type: ndcg_at_3
|
263 |
+
value: 42.309000000000005
|
264 |
+
- type: ndcg_at_5
|
265 |
+
value: 43.485
|
266 |
+
- type: precision_at_1
|
267 |
+
value: 37.482
|
268 |
+
- type: precision_at_10
|
269 |
+
value: 8.455
|
270 |
+
- type: precision_at_100
|
271 |
+
value: 1.3780000000000001
|
272 |
+
- type: precision_at_1000
|
273 |
+
value: 0.188
|
274 |
+
- type: precision_at_3
|
275 |
+
value: 20.172
|
276 |
+
- type: precision_at_5
|
277 |
+
value: 13.705
|
278 |
+
- type: recall_at_1
|
279 |
+
value: 30.623
|
280 |
+
- type: recall_at_10
|
281 |
+
value: 56.77100000000001
|
282 |
+
- type: recall_at_100
|
283 |
+
value: 80.034
|
284 |
+
- type: recall_at_1000
|
285 |
+
value: 94.62899999999999
|
286 |
+
- type: recall_at_3
|
287 |
+
value: 44.663000000000004
|
288 |
+
- type: recall_at_5
|
289 |
+
value: 48.692
|
290 |
+
- task:
|
291 |
+
type: Retrieval
|
292 |
+
dataset:
|
293 |
+
type: BeIR/cqadupstack
|
294 |
+
name: MTEB CQADupstackEnglishRetrieval
|
295 |
+
config: default
|
296 |
+
split: test
|
297 |
+
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
|
298 |
+
metrics:
|
299 |
+
- type: map_at_1
|
300 |
+
value: 27.941
|
301 |
+
- type: map_at_10
|
302 |
+
value: 38.437
|
303 |
+
- type: map_at_100
|
304 |
+
value: 39.625
|
305 |
+
- type: map_at_1000
|
306 |
+
value: 39.753
|
307 |
+
- type: map_at_3
|
308 |
+
value: 35.388999999999996
|
309 |
+
- type: map_at_5
|
310 |
+
value: 37.113
|
311 |
+
- type: mrr_at_1
|
312 |
+
value: 34.522000000000006
|
313 |
+
- type: mrr_at_10
|
314 |
+
value: 43.864999999999995
|
315 |
+
- type: mrr_at_100
|
316 |
+
value: 44.533
|
317 |
+
- type: mrr_at_1000
|
318 |
+
value: 44.580999999999996
|
319 |
+
- type: mrr_at_3
|
320 |
+
value: 41.55
|
321 |
+
- type: mrr_at_5
|
322 |
+
value: 42.942
|
323 |
+
- type: ndcg_at_1
|
324 |
+
value: 34.522000000000006
|
325 |
+
- type: ndcg_at_10
|
326 |
+
value: 44.330000000000005
|
327 |
+
- type: ndcg_at_100
|
328 |
+
value: 48.61
|
329 |
+
- type: ndcg_at_1000
|
330 |
+
value: 50.712999999999994
|
331 |
+
- type: ndcg_at_3
|
332 |
+
value: 39.834
|
333 |
+
- type: ndcg_at_5
|
334 |
+
value: 42.016
|
335 |
+
- type: precision_at_1
|
336 |
+
value: 34.522000000000006
|
337 |
+
- type: precision_at_10
|
338 |
+
value: 8.471
|
339 |
+
- type: precision_at_100
|
340 |
+
value: 1.3379999999999999
|
341 |
+
- type: precision_at_1000
|
342 |
+
value: 0.182
|
343 |
+
- type: precision_at_3
|
344 |
+
value: 19.363
|
345 |
+
- type: precision_at_5
|
346 |
+
value: 13.898
|
347 |
+
- type: recall_at_1
|
348 |
+
value: 27.941
|
349 |
+
- type: recall_at_10
|
350 |
+
value: 55.336
|
351 |
+
- type: recall_at_100
|
352 |
+
value: 73.51100000000001
|
353 |
+
- type: recall_at_1000
|
354 |
+
value: 86.636
|
355 |
+
- type: recall_at_3
|
356 |
+
value: 42.54
|
357 |
+
- type: recall_at_5
|
358 |
+
value: 48.392
|
359 |
+
- task:
|
360 |
+
type: Retrieval
|
361 |
+
dataset:
|
362 |
+
type: BeIR/cqadupstack
|
363 |
+
name: MTEB CQADupstackGamingRetrieval
|
364 |
+
config: default
|
365 |
+
split: test
|
366 |
+
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
|
367 |
+
metrics:
|
368 |
+
- type: map_at_1
|
369 |
+
value: 32.681
|
370 |
+
- type: map_at_10
|
371 |
+
value: 45.48
|
372 |
+
- type: map_at_100
|
373 |
+
value: 46.542
|
374 |
+
- type: map_at_1000
|
375 |
+
value: 46.604
|
376 |
+
- type: map_at_3
|
377 |
+
value: 42.076
|
378 |
+
- type: map_at_5
|
379 |
+
value: 44.076
|
380 |
+
- type: mrr_at_1
|
381 |
+
value: 37.492
|
382 |
+
- type: mrr_at_10
|
383 |
+
value: 48.746
|
384 |
+
- type: mrr_at_100
|
385 |
+
value: 49.485
|
386 |
+
- type: mrr_at_1000
|
387 |
+
value: 49.517
|
388 |
+
- type: mrr_at_3
|
389 |
+
value: 45.998
|
390 |
+
- type: mrr_at_5
|
391 |
+
value: 47.681000000000004
|
392 |
+
- type: ndcg_at_1
|
393 |
+
value: 37.492
|
394 |
+
- type: ndcg_at_10
|
395 |
+
value: 51.778999999999996
|
396 |
+
- type: ndcg_at_100
|
397 |
+
value: 56.294
|
398 |
+
- type: ndcg_at_1000
|
399 |
+
value: 57.58
|
400 |
+
- type: ndcg_at_3
|
401 |
+
value: 45.856
|
402 |
+
- type: ndcg_at_5
|
403 |
+
value: 48.968
|
404 |
+
- type: precision_at_1
|
405 |
+
value: 37.492
|
406 |
+
- type: precision_at_10
|
407 |
+
value: 8.620999999999999
|
408 |
+
- type: precision_at_100
|
409 |
+
value: 1.189
|
410 |
+
- type: precision_at_1000
|
411 |
+
value: 0.135
|
412 |
+
- type: precision_at_3
|
413 |
+
value: 20.773
|
414 |
+
- type: precision_at_5
|
415 |
+
value: 14.596
|
416 |
+
- type: recall_at_1
|
417 |
+
value: 32.681
|
418 |
+
- type: recall_at_10
|
419 |
+
value: 67.196
|
420 |
+
- type: recall_at_100
|
421 |
+
value: 87.027
|
422 |
+
- type: recall_at_1000
|
423 |
+
value: 96.146
|
424 |
+
- type: recall_at_3
|
425 |
+
value: 51.565000000000005
|
426 |
+
- type: recall_at_5
|
427 |
+
value: 59.123999999999995
|
428 |
+
- task:
|
429 |
+
type: Retrieval
|
430 |
+
dataset:
|
431 |
+
type: BeIR/cqadupstack
|
432 |
+
name: MTEB CQADupstackGisRetrieval
|
433 |
+
config: default
|
434 |
+
split: test
|
435 |
+
revision: 5003b3064772da1887988e05400cf3806fe491f2
|
436 |
+
metrics:
|
437 |
+
- type: map_at_1
|
438 |
+
value: 22.421
|
439 |
+
- type: map_at_10
|
440 |
+
value: 30.127
|
441 |
+
- type: map_at_100
|
442 |
+
value: 31.253999999999998
|
443 |
+
- type: map_at_1000
|
444 |
+
value: 31.344
|
445 |
+
- type: map_at_3
|
446 |
+
value: 27.673
|
447 |
+
- type: map_at_5
|
448 |
+
value: 29.182000000000002
|
449 |
+
- type: mrr_at_1
|
450 |
+
value: 24.068
|
451 |
+
- type: mrr_at_10
|
452 |
+
value: 31.857000000000003
|
453 |
+
- type: mrr_at_100
|
454 |
+
value: 32.808
|
455 |
+
- type: mrr_at_1000
|
456 |
+
value: 32.881
|
457 |
+
- type: mrr_at_3
|
458 |
+
value: 29.397000000000002
|
459 |
+
- type: mrr_at_5
|
460 |
+
value: 30.883
|
461 |
+
- type: ndcg_at_1
|
462 |
+
value: 24.068
|
463 |
+
- type: ndcg_at_10
|
464 |
+
value: 34.642
|
465 |
+
- type: ndcg_at_100
|
466 |
+
value: 40.327
|
467 |
+
- type: ndcg_at_1000
|
468 |
+
value: 42.55
|
469 |
+
- type: ndcg_at_3
|
470 |
+
value: 29.868
|
471 |
+
- type: ndcg_at_5
|
472 |
+
value: 32.461
|
473 |
+
- type: precision_at_1
|
474 |
+
value: 24.068
|
475 |
+
- type: precision_at_10
|
476 |
+
value: 5.390000000000001
|
477 |
+
- type: precision_at_100
|
478 |
+
value: 0.873
|
479 |
+
- type: precision_at_1000
|
480 |
+
value: 0.109
|
481 |
+
- type: precision_at_3
|
482 |
+
value: 12.692999999999998
|
483 |
+
- type: precision_at_5
|
484 |
+
value: 9.107
|
485 |
+
- type: recall_at_1
|
486 |
+
value: 22.421
|
487 |
+
- type: recall_at_10
|
488 |
+
value: 46.846
|
489 |
+
- type: recall_at_100
|
490 |
+
value: 73.409
|
491 |
+
- type: recall_at_1000
|
492 |
+
value: 90.06
|
493 |
+
- type: recall_at_3
|
494 |
+
value: 34.198
|
495 |
+
- type: recall_at_5
|
496 |
+
value: 40.437
|
497 |
+
- task:
|
498 |
+
type: Retrieval
|
499 |
+
dataset:
|
500 |
+
type: BeIR/cqadupstack
|
501 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
502 |
+
config: default
|
503 |
+
split: test
|
504 |
+
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
|
505 |
+
metrics:
|
506 |
+
- type: map_at_1
|
507 |
+
value: 16.494
|
508 |
+
- type: map_at_10
|
509 |
+
value: 24.4
|
510 |
+
- type: map_at_100
|
511 |
+
value: 25.718999999999998
|
512 |
+
- type: map_at_1000
|
513 |
+
value: 25.840000000000003
|
514 |
+
- type: map_at_3
|
515 |
+
value: 21.731
|
516 |
+
- type: map_at_5
|
517 |
+
value: 23.247999999999998
|
518 |
+
- type: mrr_at_1
|
519 |
+
value: 20.274
|
520 |
+
- type: mrr_at_10
|
521 |
+
value: 28.866000000000003
|
522 |
+
- type: mrr_at_100
|
523 |
+
value: 29.889
|
524 |
+
- type: mrr_at_1000
|
525 |
+
value: 29.957
|
526 |
+
- type: mrr_at_3
|
527 |
+
value: 26.284999999999997
|
528 |
+
- type: mrr_at_5
|
529 |
+
value: 27.79
|
530 |
+
- type: ndcg_at_1
|
531 |
+
value: 20.274
|
532 |
+
- type: ndcg_at_10
|
533 |
+
value: 29.666999999999998
|
534 |
+
- type: ndcg_at_100
|
535 |
+
value: 36.095
|
536 |
+
- type: ndcg_at_1000
|
537 |
+
value: 38.87
|
538 |
+
- type: ndcg_at_3
|
539 |
+
value: 24.672
|
540 |
+
- type: ndcg_at_5
|
541 |
+
value: 27.106
|
542 |
+
- type: precision_at_1
|
543 |
+
value: 20.274
|
544 |
+
- type: precision_at_10
|
545 |
+
value: 5.5969999999999995
|
546 |
+
- type: precision_at_100
|
547 |
+
value: 1.04
|
548 |
+
- type: precision_at_1000
|
549 |
+
value: 0.14100000000000001
|
550 |
+
- type: precision_at_3
|
551 |
+
value: 12.023
|
552 |
+
- type: precision_at_5
|
553 |
+
value: 8.98
|
554 |
+
- type: recall_at_1
|
555 |
+
value: 16.494
|
556 |
+
- type: recall_at_10
|
557 |
+
value: 41.400999999999996
|
558 |
+
- type: recall_at_100
|
559 |
+
value: 69.811
|
560 |
+
- type: recall_at_1000
|
561 |
+
value: 89.422
|
562 |
+
- type: recall_at_3
|
563 |
+
value: 27.834999999999997
|
564 |
+
- type: recall_at_5
|
565 |
+
value: 33.774
|
566 |
+
- task:
|
567 |
+
type: Retrieval
|
568 |
+
dataset:
|
569 |
+
type: BeIR/cqadupstack
|
570 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
571 |
+
config: default
|
572 |
+
split: test
|
573 |
+
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
|
574 |
+
metrics:
|
575 |
+
- type: map_at_1
|
576 |
+
value: 26.150000000000002
|
577 |
+
- type: map_at_10
|
578 |
+
value: 36.012
|
579 |
+
- type: map_at_100
|
580 |
+
value: 37.377
|
581 |
+
- type: map_at_1000
|
582 |
+
value: 37.497
|
583 |
+
- type: map_at_3
|
584 |
+
value: 32.712
|
585 |
+
- type: map_at_5
|
586 |
+
value: 34.475
|
587 |
+
- type: mrr_at_1
|
588 |
+
value: 32.05
|
589 |
+
- type: mrr_at_10
|
590 |
+
value: 41.556
|
591 |
+
- type: mrr_at_100
|
592 |
+
value: 42.451
|
593 |
+
- type: mrr_at_1000
|
594 |
+
value: 42.498000000000005
|
595 |
+
- type: mrr_at_3
|
596 |
+
value: 38.659
|
597 |
+
- type: mrr_at_5
|
598 |
+
value: 40.314
|
599 |
+
- type: ndcg_at_1
|
600 |
+
value: 32.05
|
601 |
+
- type: ndcg_at_10
|
602 |
+
value: 42.132
|
603 |
+
- type: ndcg_at_100
|
604 |
+
value: 48.028999999999996
|
605 |
+
- type: ndcg_at_1000
|
606 |
+
value: 50.229
|
607 |
+
- type: ndcg_at_3
|
608 |
+
value: 36.622
|
609 |
+
- type: ndcg_at_5
|
610 |
+
value: 39.062000000000005
|
611 |
+
- type: precision_at_1
|
612 |
+
value: 32.05
|
613 |
+
- type: precision_at_10
|
614 |
+
value: 7.767
|
615 |
+
- type: precision_at_100
|
616 |
+
value: 1.269
|
617 |
+
- type: precision_at_1000
|
618 |
+
value: 0.164
|
619 |
+
- type: precision_at_3
|
620 |
+
value: 17.355999999999998
|
621 |
+
- type: precision_at_5
|
622 |
+
value: 12.474
|
623 |
+
- type: recall_at_1
|
624 |
+
value: 26.150000000000002
|
625 |
+
- type: recall_at_10
|
626 |
+
value: 55.205000000000005
|
627 |
+
- type: recall_at_100
|
628 |
+
value: 80.2
|
629 |
+
- type: recall_at_1000
|
630 |
+
value: 94.524
|
631 |
+
- type: recall_at_3
|
632 |
+
value: 39.322
|
633 |
+
- type: recall_at_5
|
634 |
+
value: 45.761
|
635 |
+
- task:
|
636 |
+
type: Retrieval
|
637 |
+
dataset:
|
638 |
+
type: BeIR/cqadupstack
|
639 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
640 |
+
config: default
|
641 |
+
split: test
|
642 |
+
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
|
643 |
+
metrics:
|
644 |
+
- type: map_at_1
|
645 |
+
value: 23.741
|
646 |
+
- type: map_at_10
|
647 |
+
value: 33.51
|
648 |
+
- type: map_at_100
|
649 |
+
value: 34.882999999999996
|
650 |
+
- type: map_at_1000
|
651 |
+
value: 34.995
|
652 |
+
- type: map_at_3
|
653 |
+
value: 30.514000000000003
|
654 |
+
- type: map_at_5
|
655 |
+
value: 32.085
|
656 |
+
- type: mrr_at_1
|
657 |
+
value: 28.653000000000002
|
658 |
+
- type: mrr_at_10
|
659 |
+
value: 38.059
|
660 |
+
- type: mrr_at_100
|
661 |
+
value: 39.050000000000004
|
662 |
+
- type: mrr_at_1000
|
663 |
+
value: 39.107
|
664 |
+
- type: mrr_at_3
|
665 |
+
value: 35.445
|
666 |
+
- type: mrr_at_5
|
667 |
+
value: 36.849
|
668 |
+
- type: ndcg_at_1
|
669 |
+
value: 28.653000000000002
|
670 |
+
- type: ndcg_at_10
|
671 |
+
value: 39.186
|
672 |
+
- type: ndcg_at_100
|
673 |
+
value: 45.301
|
674 |
+
- type: ndcg_at_1000
|
675 |
+
value: 47.547
|
676 |
+
- type: ndcg_at_3
|
677 |
+
value: 34.103
|
678 |
+
- type: ndcg_at_5
|
679 |
+
value: 36.239
|
680 |
+
- type: precision_at_1
|
681 |
+
value: 28.653000000000002
|
682 |
+
- type: precision_at_10
|
683 |
+
value: 7.295
|
684 |
+
- type: precision_at_100
|
685 |
+
value: 1.2189999999999999
|
686 |
+
- type: precision_at_1000
|
687 |
+
value: 0.159
|
688 |
+
- type: precision_at_3
|
689 |
+
value: 16.438
|
690 |
+
- type: precision_at_5
|
691 |
+
value: 11.804
|
692 |
+
- type: recall_at_1
|
693 |
+
value: 23.741
|
694 |
+
- type: recall_at_10
|
695 |
+
value: 51.675000000000004
|
696 |
+
- type: recall_at_100
|
697 |
+
value: 78.13799999999999
|
698 |
+
- type: recall_at_1000
|
699 |
+
value: 93.12700000000001
|
700 |
+
- type: recall_at_3
|
701 |
+
value: 37.033
|
702 |
+
- type: recall_at_5
|
703 |
+
value: 42.793
|
704 |
+
- task:
|
705 |
+
type: Retrieval
|
706 |
+
dataset:
|
707 |
+
type: BeIR/cqadupstack
|
708 |
+
name: MTEB CQADupstackStatsRetrieval
|
709 |
+
config: default
|
710 |
+
split: test
|
711 |
+
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
|
712 |
+
metrics:
|
713 |
+
- type: map_at_1
|
714 |
+
value: 23.452
|
715 |
+
- type: map_at_10
|
716 |
+
value: 30.231
|
717 |
+
- type: map_at_100
|
718 |
+
value: 31.227
|
719 |
+
- type: map_at_1000
|
720 |
+
value: 31.338
|
721 |
+
- type: map_at_3
|
722 |
+
value: 28.083000000000002
|
723 |
+
- type: map_at_5
|
724 |
+
value: 29.125
|
725 |
+
- type: mrr_at_1
|
726 |
+
value: 25.613000000000003
|
727 |
+
- type: mrr_at_10
|
728 |
+
value: 32.62
|
729 |
+
- type: mrr_at_100
|
730 |
+
value: 33.469
|
731 |
+
- type: mrr_at_1000
|
732 |
+
value: 33.554
|
733 |
+
- type: mrr_at_3
|
734 |
+
value: 30.368000000000002
|
735 |
+
- type: mrr_at_5
|
736 |
+
value: 31.502999999999997
|
737 |
+
- type: ndcg_at_1
|
738 |
+
value: 25.613000000000003
|
739 |
+
- type: ndcg_at_10
|
740 |
+
value: 34.441
|
741 |
+
- type: ndcg_at_100
|
742 |
+
value: 39.253
|
743 |
+
- type: ndcg_at_1000
|
744 |
+
value: 42.105
|
745 |
+
- type: ndcg_at_3
|
746 |
+
value: 30.183
|
747 |
+
- type: ndcg_at_5
|
748 |
+
value: 31.917
|
749 |
+
- type: precision_at_1
|
750 |
+
value: 25.613000000000003
|
751 |
+
- type: precision_at_10
|
752 |
+
value: 5.367999999999999
|
753 |
+
- type: precision_at_100
|
754 |
+
value: 0.848
|
755 |
+
- type: precision_at_1000
|
756 |
+
value: 0.117
|
757 |
+
- type: precision_at_3
|
758 |
+
value: 12.73
|
759 |
+
- type: precision_at_5
|
760 |
+
value: 8.773
|
761 |
+
- type: recall_at_1
|
762 |
+
value: 23.452
|
763 |
+
- type: recall_at_10
|
764 |
+
value: 45.021
|
765 |
+
- type: recall_at_100
|
766 |
+
value: 66.563
|
767 |
+
- type: recall_at_1000
|
768 |
+
value: 87.713
|
769 |
+
- type: recall_at_3
|
770 |
+
value: 33.433
|
771 |
+
- type: recall_at_5
|
772 |
+
value: 37.637
|
773 |
+
- task:
|
774 |
+
type: Retrieval
|
775 |
+
dataset:
|
776 |
+
type: BeIR/cqadupstack
|
777 |
+
name: MTEB CQADupstackTexRetrieval
|
778 |
+
config: default
|
779 |
+
split: test
|
780 |
+
revision: 46989137a86843e03a6195de44b09deda022eec7
|
781 |
+
metrics:
|
782 |
+
- type: map_at_1
|
783 |
+
value: 16.11
|
784 |
+
- type: map_at_10
|
785 |
+
value: 22.832
|
786 |
+
- type: map_at_100
|
787 |
+
value: 23.829
|
788 |
+
- type: map_at_1000
|
789 |
+
value: 23.959
|
790 |
+
- type: map_at_3
|
791 |
+
value: 20.66
|
792 |
+
- type: map_at_5
|
793 |
+
value: 21.851000000000003
|
794 |
+
- type: mrr_at_1
|
795 |
+
value: 19.408
|
796 |
+
- type: mrr_at_10
|
797 |
+
value: 26.354
|
798 |
+
- type: mrr_at_100
|
799 |
+
value: 27.237000000000002
|
800 |
+
- type: mrr_at_1000
|
801 |
+
value: 27.32
|
802 |
+
- type: mrr_at_3
|
803 |
+
value: 24.243000000000002
|
804 |
+
- type: mrr_at_5
|
805 |
+
value: 25.430000000000003
|
806 |
+
- type: ndcg_at_1
|
807 |
+
value: 19.408
|
808 |
+
- type: ndcg_at_10
|
809 |
+
value: 27.239
|
810 |
+
- type: ndcg_at_100
|
811 |
+
value: 32.286
|
812 |
+
- type: ndcg_at_1000
|
813 |
+
value: 35.498000000000005
|
814 |
+
- type: ndcg_at_3
|
815 |
+
value: 23.244
|
816 |
+
- type: ndcg_at_5
|
817 |
+
value: 25.080999999999996
|
818 |
+
- type: precision_at_1
|
819 |
+
value: 19.408
|
820 |
+
- type: precision_at_10
|
821 |
+
value: 4.917
|
822 |
+
- type: precision_at_100
|
823 |
+
value: 0.874
|
824 |
+
- type: precision_at_1000
|
825 |
+
value: 0.133
|
826 |
+
- type: precision_at_3
|
827 |
+
value: 10.863
|
828 |
+
- type: precision_at_5
|
829 |
+
value: 7.887
|
830 |
+
- type: recall_at_1
|
831 |
+
value: 16.11
|
832 |
+
- type: recall_at_10
|
833 |
+
value: 37.075
|
834 |
+
- type: recall_at_100
|
835 |
+
value: 60.251999999999995
|
836 |
+
- type: recall_at_1000
|
837 |
+
value: 83.38600000000001
|
838 |
+
- type: recall_at_3
|
839 |
+
value: 25.901999999999997
|
840 |
+
- type: recall_at_5
|
841 |
+
value: 30.612000000000002
|
842 |
+
- task:
|
843 |
+
type: Retrieval
|
844 |
+
dataset:
|
845 |
+
type: BeIR/cqadupstack
|
846 |
+
name: MTEB CQADupstackUnixRetrieval
|
847 |
+
config: default
|
848 |
+
split: test
|
849 |
+
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
|
850 |
+
metrics:
|
851 |
+
- type: map_at_1
|
852 |
+
value: 25.941
|
853 |
+
- type: map_at_10
|
854 |
+
value: 33.711999999999996
|
855 |
+
- type: map_at_100
|
856 |
+
value: 34.926
|
857 |
+
- type: map_at_1000
|
858 |
+
value: 35.05
|
859 |
+
- type: map_at_3
|
860 |
+
value: 31.075000000000003
|
861 |
+
- type: map_at_5
|
862 |
+
value: 32.611000000000004
|
863 |
+
- type: mrr_at_1
|
864 |
+
value: 30.784
|
865 |
+
- type: mrr_at_10
|
866 |
+
value: 38.079
|
867 |
+
- type: mrr_at_100
|
868 |
+
value: 39.018
|
869 |
+
- type: mrr_at_1000
|
870 |
+
value: 39.09
|
871 |
+
- type: mrr_at_3
|
872 |
+
value: 35.603
|
873 |
+
- type: mrr_at_5
|
874 |
+
value: 36.988
|
875 |
+
- type: ndcg_at_1
|
876 |
+
value: 30.784
|
877 |
+
- type: ndcg_at_10
|
878 |
+
value: 38.586
|
879 |
+
- type: ndcg_at_100
|
880 |
+
value: 44.205
|
881 |
+
- type: ndcg_at_1000
|
882 |
+
value: 46.916000000000004
|
883 |
+
- type: ndcg_at_3
|
884 |
+
value: 33.899
|
885 |
+
- type: ndcg_at_5
|
886 |
+
value: 36.11
|
887 |
+
- type: precision_at_1
|
888 |
+
value: 30.784
|
889 |
+
- type: precision_at_10
|
890 |
+
value: 6.409
|
891 |
+
- type: precision_at_100
|
892 |
+
value: 1.034
|
893 |
+
- type: precision_at_1000
|
894 |
+
value: 0.13799999999999998
|
895 |
+
- type: precision_at_3
|
896 |
+
value: 15.112
|
897 |
+
- type: precision_at_5
|
898 |
+
value: 10.728
|
899 |
+
- type: recall_at_1
|
900 |
+
value: 25.941
|
901 |
+
- type: recall_at_10
|
902 |
+
value: 49.242999999999995
|
903 |
+
- type: recall_at_100
|
904 |
+
value: 73.85000000000001
|
905 |
+
- type: recall_at_1000
|
906 |
+
value: 92.782
|
907 |
+
- type: recall_at_3
|
908 |
+
value: 36.204
|
909 |
+
- type: recall_at_5
|
910 |
+
value: 41.908
|
911 |
+
- task:
|
912 |
+
type: Retrieval
|
913 |
+
dataset:
|
914 |
+
type: BeIR/cqadupstack
|
915 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
916 |
+
config: default
|
917 |
+
split: test
|
918 |
+
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
|
919 |
+
metrics:
|
920 |
+
- type: map_at_1
|
921 |
+
value: 24.401999999999997
|
922 |
+
- type: map_at_10
|
923 |
+
value: 33.195
|
924 |
+
- type: map_at_100
|
925 |
+
value: 34.699999999999996
|
926 |
+
- type: map_at_1000
|
927 |
+
value: 34.946
|
928 |
+
- type: map_at_3
|
929 |
+
value: 30.570999999999998
|
930 |
+
- type: map_at_5
|
931 |
+
value: 32.0
|
932 |
+
- type: mrr_at_1
|
933 |
+
value: 28.656
|
934 |
+
- type: mrr_at_10
|
935 |
+
value: 37.039
|
936 |
+
- type: mrr_at_100
|
937 |
+
value: 38.049
|
938 |
+
- type: mrr_at_1000
|
939 |
+
value: 38.108
|
940 |
+
- type: mrr_at_3
|
941 |
+
value: 34.717
|
942 |
+
- type: mrr_at_5
|
943 |
+
value: 36.07
|
944 |
+
- type: ndcg_at_1
|
945 |
+
value: 28.656
|
946 |
+
- type: ndcg_at_10
|
947 |
+
value: 38.557
|
948 |
+
- type: ndcg_at_100
|
949 |
+
value: 44.511
|
950 |
+
- type: ndcg_at_1000
|
951 |
+
value: 47.346
|
952 |
+
- type: ndcg_at_3
|
953 |
+
value: 34.235
|
954 |
+
- type: ndcg_at_5
|
955 |
+
value: 36.260999999999996
|
956 |
+
- type: precision_at_1
|
957 |
+
value: 28.656
|
958 |
+
- type: precision_at_10
|
959 |
+
value: 7.312
|
960 |
+
- type: precision_at_100
|
961 |
+
value: 1.451
|
962 |
+
- type: precision_at_1000
|
963 |
+
value: 0.242
|
964 |
+
- type: precision_at_3
|
965 |
+
value: 15.942
|
966 |
+
- type: precision_at_5
|
967 |
+
value: 11.66
|
968 |
+
- type: recall_at_1
|
969 |
+
value: 24.401999999999997
|
970 |
+
- type: recall_at_10
|
971 |
+
value: 48.791000000000004
|
972 |
+
- type: recall_at_100
|
973 |
+
value: 76.211
|
974 |
+
- type: recall_at_1000
|
975 |
+
value: 93.92
|
976 |
+
- type: recall_at_3
|
977 |
+
value: 36.975
|
978 |
+
- type: recall_at_5
|
979 |
+
value: 42.01
|
980 |
+
- task:
|
981 |
+
type: Retrieval
|
982 |
+
dataset:
|
983 |
+
type: BeIR/cqadupstack
|
984 |
+
name: MTEB CQADupstackWordpressRetrieval
|
985 |
+
config: default
|
986 |
+
split: test
|
987 |
+
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
|
988 |
+
metrics:
|
989 |
+
- type: map_at_1
|
990 |
+
value: 19.07
|
991 |
+
- type: map_at_10
|
992 |
+
value: 26.608999999999998
|
993 |
+
- type: map_at_100
|
994 |
+
value: 27.625
|
995 |
+
- type: map_at_1000
|
996 |
+
value: 27.743000000000002
|
997 |
+
- type: map_at_3
|
998 |
+
value: 24.532999999999998
|
999 |
+
- type: map_at_5
|
1000 |
+
value: 25.671
|
1001 |
+
- type: mrr_at_1
|
1002 |
+
value: 20.518
|
1003 |
+
- type: mrr_at_10
|
1004 |
+
value: 28.541
|
1005 |
+
- type: mrr_at_100
|
1006 |
+
value: 29.453000000000003
|
1007 |
+
- type: mrr_at_1000
|
1008 |
+
value: 29.536
|
1009 |
+
- type: mrr_at_3
|
1010 |
+
value: 26.71
|
1011 |
+
- type: mrr_at_5
|
1012 |
+
value: 27.708
|
1013 |
+
- type: ndcg_at_1
|
1014 |
+
value: 20.518
|
1015 |
+
- type: ndcg_at_10
|
1016 |
+
value: 30.855
|
1017 |
+
- type: ndcg_at_100
|
1018 |
+
value: 35.973
|
1019 |
+
- type: ndcg_at_1000
|
1020 |
+
value: 38.827
|
1021 |
+
- type: ndcg_at_3
|
1022 |
+
value: 26.868
|
1023 |
+
- type: ndcg_at_5
|
1024 |
+
value: 28.74
|
1025 |
+
- type: precision_at_1
|
1026 |
+
value: 20.518
|
1027 |
+
- type: precision_at_10
|
1028 |
+
value: 4.843
|
1029 |
+
- type: precision_at_100
|
1030 |
+
value: 0.799
|
1031 |
+
- type: precision_at_1000
|
1032 |
+
value: 0.116
|
1033 |
+
- type: precision_at_3
|
1034 |
+
value: 11.645
|
1035 |
+
- type: precision_at_5
|
1036 |
+
value: 8.133
|
1037 |
+
- type: recall_at_1
|
1038 |
+
value: 19.07
|
1039 |
+
- type: recall_at_10
|
1040 |
+
value: 41.925000000000004
|
1041 |
+
- type: recall_at_100
|
1042 |
+
value: 65.68
|
1043 |
+
- type: recall_at_1000
|
1044 |
+
value: 86.713
|
1045 |
+
- type: recall_at_3
|
1046 |
+
value: 31.251
|
1047 |
+
- type: recall_at_5
|
1048 |
+
value: 35.653
|
1049 |
+
- task:
|
1050 |
+
type: Retrieval
|
1051 |
+
dataset:
|
1052 |
+
type: mteb/climate-fever
|
1053 |
+
name: MTEB ClimateFEVER
|
1054 |
+
config: default
|
1055 |
+
split: test
|
1056 |
+
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
|
1057 |
+
metrics:
|
1058 |
+
- type: map_at_1
|
1059 |
+
value: 18.762
|
1060 |
+
- type: map_at_10
|
1061 |
+
value: 32.412
|
1062 |
+
- type: map_at_100
|
1063 |
+
value: 34.506
|
1064 |
+
- type: map_at_1000
|
1065 |
+
value: 34.678
|
1066 |
+
- type: map_at_3
|
1067 |
+
value: 27.594
|
1068 |
+
- type: map_at_5
|
1069 |
+
value: 30.128
|
1070 |
+
- type: mrr_at_1
|
1071 |
+
value: 42.345
|
1072 |
+
- type: mrr_at_10
|
1073 |
+
value: 54.443
|
1074 |
+
- type: mrr_at_100
|
1075 |
+
value: 55.05799999999999
|
1076 |
+
- type: mrr_at_1000
|
1077 |
+
value: 55.076
|
1078 |
+
- type: mrr_at_3
|
1079 |
+
value: 51.553000000000004
|
1080 |
+
- type: mrr_at_5
|
1081 |
+
value: 53.269
|
1082 |
+
- type: ndcg_at_1
|
1083 |
+
value: 42.345
|
1084 |
+
- type: ndcg_at_10
|
1085 |
+
value: 42.304
|
1086 |
+
- type: ndcg_at_100
|
1087 |
+
value: 49.425000000000004
|
1088 |
+
- type: ndcg_at_1000
|
1089 |
+
value: 52.123
|
1090 |
+
- type: ndcg_at_3
|
1091 |
+
value: 36.271
|
1092 |
+
- type: ndcg_at_5
|
1093 |
+
value: 38.216
|
1094 |
+
- type: precision_at_1
|
1095 |
+
value: 42.345
|
1096 |
+
- type: precision_at_10
|
1097 |
+
value: 12.808
|
1098 |
+
- type: precision_at_100
|
1099 |
+
value: 2.062
|
1100 |
+
- type: precision_at_1000
|
1101 |
+
value: 0.258
|
1102 |
+
- type: precision_at_3
|
1103 |
+
value: 26.840000000000003
|
1104 |
+
- type: precision_at_5
|
1105 |
+
value: 20.052
|
1106 |
+
- type: recall_at_1
|
1107 |
+
value: 18.762
|
1108 |
+
- type: recall_at_10
|
1109 |
+
value: 47.976
|
1110 |
+
- type: recall_at_100
|
1111 |
+
value: 71.86
|
1112 |
+
- type: recall_at_1000
|
1113 |
+
value: 86.61999999999999
|
1114 |
+
- type: recall_at_3
|
1115 |
+
value: 32.708999999999996
|
1116 |
+
- type: recall_at_5
|
1117 |
+
value: 39.151
|
1118 |
+
- task:
|
1119 |
+
type: Retrieval
|
1120 |
+
dataset:
|
1121 |
+
type: mteb/dbpedia
|
1122 |
+
name: MTEB DBPedia
|
1123 |
+
config: default
|
1124 |
+
split: test
|
1125 |
+
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
|
1126 |
+
metrics:
|
1127 |
+
- type: map_at_1
|
1128 |
+
value: 9.685
|
1129 |
+
- type: map_at_10
|
1130 |
+
value: 21.65
|
1131 |
+
- type: map_at_100
|
1132 |
+
value: 30.952
|
1133 |
+
- type: map_at_1000
|
1134 |
+
value: 33.049
|
1135 |
+
- type: map_at_3
|
1136 |
+
value: 14.953
|
1137 |
+
- type: map_at_5
|
1138 |
+
value: 17.592
|
1139 |
+
- type: mrr_at_1
|
1140 |
+
value: 72.0
|
1141 |
+
- type: mrr_at_10
|
1142 |
+
value: 78.054
|
1143 |
+
- type: mrr_at_100
|
1144 |
+
value: 78.41900000000001
|
1145 |
+
- type: mrr_at_1000
|
1146 |
+
value: 78.425
|
1147 |
+
- type: mrr_at_3
|
1148 |
+
value: 76.5
|
1149 |
+
- type: mrr_at_5
|
1150 |
+
value: 77.28699999999999
|
1151 |
+
- type: ndcg_at_1
|
1152 |
+
value: 61.25000000000001
|
1153 |
+
- type: ndcg_at_10
|
1154 |
+
value: 46.306000000000004
|
1155 |
+
- type: ndcg_at_100
|
1156 |
+
value: 50.867
|
1157 |
+
- type: ndcg_at_1000
|
1158 |
+
value: 58.533
|
1159 |
+
- type: ndcg_at_3
|
1160 |
+
value: 50.857
|
1161 |
+
- type: ndcg_at_5
|
1162 |
+
value: 48.283
|
1163 |
+
- type: precision_at_1
|
1164 |
+
value: 72.0
|
1165 |
+
- type: precision_at_10
|
1166 |
+
value: 37.3
|
1167 |
+
- type: precision_at_100
|
1168 |
+
value: 11.95
|
1169 |
+
- type: precision_at_1000
|
1170 |
+
value: 2.528
|
1171 |
+
- type: precision_at_3
|
1172 |
+
value: 53.583000000000006
|
1173 |
+
- type: precision_at_5
|
1174 |
+
value: 46.6
|
1175 |
+
- type: recall_at_1
|
1176 |
+
value: 9.685
|
1177 |
+
- type: recall_at_10
|
1178 |
+
value: 27.474999999999998
|
1179 |
+
- type: recall_at_100
|
1180 |
+
value: 56.825
|
1181 |
+
- type: recall_at_1000
|
1182 |
+
value: 81.792
|
1183 |
+
- type: recall_at_3
|
1184 |
+
value: 15.939
|
1185 |
+
- type: recall_at_5
|
1186 |
+
value: 19.853
|
1187 |
+
- task:
|
1188 |
+
type: Classification
|
1189 |
+
dataset:
|
1190 |
+
type: mteb/emotion
|
1191 |
+
name: MTEB EmotionClassification
|
1192 |
+
config: default
|
1193 |
+
split: test
|
1194 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1195 |
+
metrics:
|
1196 |
+
- type: accuracy
|
1197 |
+
value: 62.805000000000014
|
1198 |
+
- type: f1
|
1199 |
+
value: 56.401757250989384
|
1200 |
+
- task:
|
1201 |
+
type: Retrieval
|
1202 |
+
dataset:
|
1203 |
+
type: mteb/fever
|
1204 |
+
name: MTEB FEVER
|
1205 |
+
config: default
|
1206 |
+
split: test
|
1207 |
+
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
|
1208 |
+
metrics:
|
1209 |
+
- type: map_at_1
|
1210 |
+
value: 83.734
|
1211 |
+
- type: map_at_10
|
1212 |
+
value: 90.089
|
1213 |
+
- type: map_at_100
|
1214 |
+
value: 90.274
|
1215 |
+
- type: map_at_1000
|
1216 |
+
value: 90.286
|
1217 |
+
- type: map_at_3
|
1218 |
+
value: 89.281
|
1219 |
+
- type: map_at_5
|
1220 |
+
value: 89.774
|
1221 |
+
- type: mrr_at_1
|
1222 |
+
value: 90.039
|
1223 |
+
- type: mrr_at_10
|
1224 |
+
value: 94.218
|
1225 |
+
- type: mrr_at_100
|
1226 |
+
value: 94.24
|
1227 |
+
- type: mrr_at_1000
|
1228 |
+
value: 94.24
|
1229 |
+
- type: mrr_at_3
|
1230 |
+
value: 93.979
|
1231 |
+
- type: mrr_at_5
|
1232 |
+
value: 94.137
|
1233 |
+
- type: ndcg_at_1
|
1234 |
+
value: 90.039
|
1235 |
+
- type: ndcg_at_10
|
1236 |
+
value: 92.597
|
1237 |
+
- type: ndcg_at_100
|
1238 |
+
value: 93.147
|
1239 |
+
- type: ndcg_at_1000
|
1240 |
+
value: 93.325
|
1241 |
+
- type: ndcg_at_3
|
1242 |
+
value: 91.64999999999999
|
1243 |
+
- type: ndcg_at_5
|
1244 |
+
value: 92.137
|
1245 |
+
- type: precision_at_1
|
1246 |
+
value: 90.039
|
1247 |
+
- type: precision_at_10
|
1248 |
+
value: 10.809000000000001
|
1249 |
+
- type: precision_at_100
|
1250 |
+
value: 1.133
|
1251 |
+
- type: precision_at_1000
|
1252 |
+
value: 0.116
|
1253 |
+
- type: precision_at_3
|
1254 |
+
value: 34.338
|
1255 |
+
- type: precision_at_5
|
1256 |
+
value: 21.089
|
1257 |
+
- type: recall_at_1
|
1258 |
+
value: 83.734
|
1259 |
+
- type: recall_at_10
|
1260 |
+
value: 96.161
|
1261 |
+
- type: recall_at_100
|
1262 |
+
value: 98.137
|
1263 |
+
- type: recall_at_1000
|
1264 |
+
value: 99.182
|
1265 |
+
- type: recall_at_3
|
1266 |
+
value: 93.551
|
1267 |
+
- type: recall_at_5
|
1268 |
+
value: 94.878
|
1269 |
+
- task:
|
1270 |
+
type: Retrieval
|
1271 |
+
dataset:
|
1272 |
+
type: mteb/fiqa
|
1273 |
+
name: MTEB FiQA2018
|
1274 |
+
config: default
|
1275 |
+
split: test
|
1276 |
+
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
|
1277 |
+
metrics:
|
1278 |
+
- type: map_at_1
|
1279 |
+
value: 24.529999999999998
|
1280 |
+
- type: map_at_10
|
1281 |
+
value: 37.229
|
1282 |
+
- type: map_at_100
|
1283 |
+
value: 39.333
|
1284 |
+
- type: map_at_1000
|
1285 |
+
value: 39.491
|
1286 |
+
- type: map_at_3
|
1287 |
+
value: 32.177
|
1288 |
+
- type: map_at_5
|
1289 |
+
value: 35.077999999999996
|
1290 |
+
- type: mrr_at_1
|
1291 |
+
value: 45.678999999999995
|
1292 |
+
- type: mrr_at_10
|
1293 |
+
value: 53.952
|
1294 |
+
- type: mrr_at_100
|
1295 |
+
value: 54.727000000000004
|
1296 |
+
- type: mrr_at_1000
|
1297 |
+
value: 54.761
|
1298 |
+
- type: mrr_at_3
|
1299 |
+
value: 51.568999999999996
|
1300 |
+
- type: mrr_at_5
|
1301 |
+
value: 52.973000000000006
|
1302 |
+
- type: ndcg_at_1
|
1303 |
+
value: 45.678999999999995
|
1304 |
+
- type: ndcg_at_10
|
1305 |
+
value: 45.297
|
1306 |
+
- type: ndcg_at_100
|
1307 |
+
value: 52.516
|
1308 |
+
- type: ndcg_at_1000
|
1309 |
+
value: 55.16
|
1310 |
+
- type: ndcg_at_3
|
1311 |
+
value: 40.569
|
1312 |
+
- type: ndcg_at_5
|
1313 |
+
value: 42.49
|
1314 |
+
- type: precision_at_1
|
1315 |
+
value: 45.678999999999995
|
1316 |
+
- type: precision_at_10
|
1317 |
+
value: 12.269
|
1318 |
+
- type: precision_at_100
|
1319 |
+
value: 1.9709999999999999
|
1320 |
+
- type: precision_at_1000
|
1321 |
+
value: 0.244
|
1322 |
+
- type: precision_at_3
|
1323 |
+
value: 25.72
|
1324 |
+
- type: precision_at_5
|
1325 |
+
value: 19.66
|
1326 |
+
- type: recall_at_1
|
1327 |
+
value: 24.529999999999998
|
1328 |
+
- type: recall_at_10
|
1329 |
+
value: 51.983999999999995
|
1330 |
+
- type: recall_at_100
|
1331 |
+
value: 78.217
|
1332 |
+
- type: recall_at_1000
|
1333 |
+
value: 94.104
|
1334 |
+
- type: recall_at_3
|
1335 |
+
value: 36.449999999999996
|
1336 |
+
- type: recall_at_5
|
1337 |
+
value: 43.336999999999996
|
1338 |
+
- task:
|
1339 |
+
type: Retrieval
|
1340 |
+
dataset:
|
1341 |
+
type: mteb/hotpotqa
|
1342 |
+
name: MTEB HotpotQA
|
1343 |
+
config: default
|
1344 |
+
split: test
|
1345 |
+
revision: ab518f4d6fcca38d87c25209f94beba119d02014
|
1346 |
+
metrics:
|
1347 |
+
- type: map_at_1
|
1348 |
+
value: 41.519
|
1349 |
+
- type: map_at_10
|
1350 |
+
value: 64.705
|
1351 |
+
- type: map_at_100
|
1352 |
+
value: 65.554
|
1353 |
+
- type: map_at_1000
|
1354 |
+
value: 65.613
|
1355 |
+
- type: map_at_3
|
1356 |
+
value: 61.478
|
1357 |
+
- type: map_at_5
|
1358 |
+
value: 63.55800000000001
|
1359 |
+
- type: mrr_at_1
|
1360 |
+
value: 83.038
|
1361 |
+
- type: mrr_at_10
|
1362 |
+
value: 87.82900000000001
|
1363 |
+
- type: mrr_at_100
|
1364 |
+
value: 87.96000000000001
|
1365 |
+
- type: mrr_at_1000
|
1366 |
+
value: 87.96300000000001
|
1367 |
+
- type: mrr_at_3
|
1368 |
+
value: 87.047
|
1369 |
+
- type: mrr_at_5
|
1370 |
+
value: 87.546
|
1371 |
+
- type: ndcg_at_1
|
1372 |
+
value: 83.038
|
1373 |
+
- type: ndcg_at_10
|
1374 |
+
value: 72.928
|
1375 |
+
- type: ndcg_at_100
|
1376 |
+
value: 75.778
|
1377 |
+
- type: ndcg_at_1000
|
1378 |
+
value: 76.866
|
1379 |
+
- type: ndcg_at_3
|
1380 |
+
value: 68.46600000000001
|
1381 |
+
- type: ndcg_at_5
|
1382 |
+
value: 71.036
|
1383 |
+
- type: precision_at_1
|
1384 |
+
value: 83.038
|
1385 |
+
- type: precision_at_10
|
1386 |
+
value: 15.040999999999999
|
1387 |
+
- type: precision_at_100
|
1388 |
+
value: 1.7260000000000002
|
1389 |
+
- type: precision_at_1000
|
1390 |
+
value: 0.187
|
1391 |
+
- type: precision_at_3
|
1392 |
+
value: 43.597
|
1393 |
+
- type: precision_at_5
|
1394 |
+
value: 28.188999999999997
|
1395 |
+
- type: recall_at_1
|
1396 |
+
value: 41.519
|
1397 |
+
- type: recall_at_10
|
1398 |
+
value: 75.20599999999999
|
1399 |
+
- type: recall_at_100
|
1400 |
+
value: 86.3
|
1401 |
+
- type: recall_at_1000
|
1402 |
+
value: 93.437
|
1403 |
+
- type: recall_at_3
|
1404 |
+
value: 65.39500000000001
|
1405 |
+
- type: recall_at_5
|
1406 |
+
value: 70.473
|
1407 |
+
- task:
|
1408 |
+
type: Classification
|
1409 |
+
dataset:
|
1410 |
+
type: mteb/imdb
|
1411 |
+
name: MTEB ImdbClassification
|
1412 |
+
config: default
|
1413 |
+
split: test
|
1414 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1415 |
+
metrics:
|
1416 |
+
- type: accuracy
|
1417 |
+
value: 96.0428
|
1418 |
+
- type: ap
|
1419 |
+
value: 94.48278082595033
|
1420 |
+
- type: f1
|
1421 |
+
value: 96.0409595432081
|
1422 |
+
- task:
|
1423 |
+
type: Retrieval
|
1424 |
+
dataset:
|
1425 |
+
type: mteb/msmarco
|
1426 |
+
name: MTEB MSMARCO
|
1427 |
+
config: default
|
1428 |
+
split: dev
|
1429 |
+
revision: c5a29a104738b98a9e76336939199e264163d4a0
|
1430 |
+
metrics:
|
1431 |
+
- type: map_at_1
|
1432 |
+
value: 21.496000000000002
|
1433 |
+
- type: map_at_10
|
1434 |
+
value: 33.82
|
1435 |
+
- type: map_at_100
|
1436 |
+
value: 35.013
|
1437 |
+
- type: map_at_1000
|
1438 |
+
value: 35.063
|
1439 |
+
- type: map_at_3
|
1440 |
+
value: 29.910999999999998
|
1441 |
+
- type: map_at_5
|
1442 |
+
value: 32.086
|
1443 |
+
- type: mrr_at_1
|
1444 |
+
value: 22.092
|
1445 |
+
- type: mrr_at_10
|
1446 |
+
value: 34.404
|
1447 |
+
- type: mrr_at_100
|
1448 |
+
value: 35.534
|
1449 |
+
- type: mrr_at_1000
|
1450 |
+
value: 35.577999999999996
|
1451 |
+
- type: mrr_at_3
|
1452 |
+
value: 30.544
|
1453 |
+
- type: mrr_at_5
|
1454 |
+
value: 32.711
|
1455 |
+
- type: ndcg_at_1
|
1456 |
+
value: 22.092
|
1457 |
+
- type: ndcg_at_10
|
1458 |
+
value: 40.877
|
1459 |
+
- type: ndcg_at_100
|
1460 |
+
value: 46.619
|
1461 |
+
- type: ndcg_at_1000
|
1462 |
+
value: 47.823
|
1463 |
+
- type: ndcg_at_3
|
1464 |
+
value: 32.861000000000004
|
1465 |
+
- type: ndcg_at_5
|
1466 |
+
value: 36.769
|
1467 |
+
- type: precision_at_1
|
1468 |
+
value: 22.092
|
1469 |
+
- type: precision_at_10
|
1470 |
+
value: 6.54
|
1471 |
+
- type: precision_at_100
|
1472 |
+
value: 0.943
|
1473 |
+
- type: precision_at_1000
|
1474 |
+
value: 0.105
|
1475 |
+
- type: precision_at_3
|
1476 |
+
value: 14.069
|
1477 |
+
- type: precision_at_5
|
1478 |
+
value: 10.424
|
1479 |
+
- type: recall_at_1
|
1480 |
+
value: 21.496000000000002
|
1481 |
+
- type: recall_at_10
|
1482 |
+
value: 62.67
|
1483 |
+
- type: recall_at_100
|
1484 |
+
value: 89.24499999999999
|
1485 |
+
- type: recall_at_1000
|
1486 |
+
value: 98.312
|
1487 |
+
- type: recall_at_3
|
1488 |
+
value: 40.796
|
1489 |
+
- type: recall_at_5
|
1490 |
+
value: 50.21600000000001
|
1491 |
+
- task:
|
1492 |
+
type: Classification
|
1493 |
+
dataset:
|
1494 |
+
type: mteb/mtop_domain
|
1495 |
+
name: MTEB MTOPDomainClassification (en)
|
1496 |
+
config: en
|
1497 |
+
split: test
|
1498 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1499 |
+
metrics:
|
1500 |
+
- type: accuracy
|
1501 |
+
value: 95.74555403556772
|
1502 |
+
- type: f1
|
1503 |
+
value: 95.61381879323093
|
1504 |
+
- task:
|
1505 |
+
type: Classification
|
1506 |
+
dataset:
|
1507 |
+
type: mteb/mtop_intent
|
1508 |
+
name: MTEB MTOPIntentClassification (en)
|
1509 |
+
config: en
|
1510 |
+
split: test
|
1511 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1512 |
+
metrics:
|
1513 |
+
- type: accuracy
|
1514 |
+
value: 85.82763337893297
|
1515 |
+
- type: f1
|
1516 |
+
value: 63.17139719465236
|
1517 |
+
- task:
|
1518 |
+
type: Classification
|
1519 |
+
dataset:
|
1520 |
+
type: mteb/amazon_massive_intent
|
1521 |
+
name: MTEB MassiveIntentClassification (en)
|
1522 |
+
config: en
|
1523 |
+
split: test
|
1524 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1525 |
+
metrics:
|
1526 |
+
- type: accuracy
|
1527 |
+
value: 78.51714862138535
|
1528 |
+
- type: f1
|
1529 |
+
value: 76.3995118440293
|
1530 |
+
- task:
|
1531 |
+
type: Classification
|
1532 |
+
dataset:
|
1533 |
+
type: mteb/amazon_massive_scenario
|
1534 |
+
name: MTEB MassiveScenarioClassification (en)
|
1535 |
+
config: en
|
1536 |
+
split: test
|
1537 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1538 |
+
metrics:
|
1539 |
+
- type: accuracy
|
1540 |
+
value: 80.03698722259583
|
1541 |
+
- type: f1
|
1542 |
+
value: 79.36511484240766
|
1543 |
+
- task:
|
1544 |
+
type: Clustering
|
1545 |
+
dataset:
|
1546 |
+
type: mteb/medrxiv-clustering-p2p
|
1547 |
+
name: MTEB MedrxivClusteringP2P
|
1548 |
+
config: default
|
1549 |
+
split: test
|
1550 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1551 |
+
metrics:
|
1552 |
+
- type: v_measure
|
1553 |
+
value: 38.68901889835701
|
1554 |
+
- task:
|
1555 |
+
type: Clustering
|
1556 |
+
dataset:
|
1557 |
+
type: mteb/medrxiv-clustering-s2s
|
1558 |
+
name: MTEB MedrxivClusteringS2S
|
1559 |
+
config: default
|
1560 |
+
split: test
|
1561 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1562 |
+
metrics:
|
1563 |
+
- type: v_measure
|
1564 |
+
value: 38.0740589898848
|
1565 |
+
- task:
|
1566 |
+
type: Reranking
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mind_small
|
1569 |
+
name: MTEB MindSmallReranking
|
1570 |
+
config: default
|
1571 |
+
split: test
|
1572 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1573 |
+
metrics:
|
1574 |
+
- type: map
|
1575 |
+
value: 33.41312482460189
|
1576 |
+
- type: mrr
|
1577 |
+
value: 34.713530863302495
|
1578 |
+
- task:
|
1579 |
+
type: Retrieval
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/nfcorpus
|
1582 |
+
name: MTEB NFCorpus
|
1583 |
+
config: default
|
1584 |
+
split: test
|
1585 |
+
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
|
1586 |
+
metrics:
|
1587 |
+
- type: map_at_1
|
1588 |
+
value: 6.232
|
1589 |
+
- type: map_at_10
|
1590 |
+
value: 13.442000000000002
|
1591 |
+
- type: map_at_100
|
1592 |
+
value: 17.443
|
1593 |
+
- type: map_at_1000
|
1594 |
+
value: 19.1
|
1595 |
+
- type: map_at_3
|
1596 |
+
value: 9.794
|
1597 |
+
- type: map_at_5
|
1598 |
+
value: 11.375
|
1599 |
+
- type: mrr_at_1
|
1600 |
+
value: 50.15500000000001
|
1601 |
+
- type: mrr_at_10
|
1602 |
+
value: 58.628
|
1603 |
+
- type: mrr_at_100
|
1604 |
+
value: 59.077
|
1605 |
+
- type: mrr_at_1000
|
1606 |
+
value: 59.119
|
1607 |
+
- type: mrr_at_3
|
1608 |
+
value: 56.914
|
1609 |
+
- type: mrr_at_5
|
1610 |
+
value: 57.921
|
1611 |
+
- type: ndcg_at_1
|
1612 |
+
value: 48.762
|
1613 |
+
- type: ndcg_at_10
|
1614 |
+
value: 37.203
|
1615 |
+
- type: ndcg_at_100
|
1616 |
+
value: 34.556
|
1617 |
+
- type: ndcg_at_1000
|
1618 |
+
value: 43.601
|
1619 |
+
- type: ndcg_at_3
|
1620 |
+
value: 43.004
|
1621 |
+
- type: ndcg_at_5
|
1622 |
+
value: 40.181
|
1623 |
+
- type: precision_at_1
|
1624 |
+
value: 50.15500000000001
|
1625 |
+
- type: precision_at_10
|
1626 |
+
value: 27.276
|
1627 |
+
- type: precision_at_100
|
1628 |
+
value: 8.981
|
1629 |
+
- type: precision_at_1000
|
1630 |
+
value: 2.228
|
1631 |
+
- type: precision_at_3
|
1632 |
+
value: 39.628
|
1633 |
+
- type: precision_at_5
|
1634 |
+
value: 33.808
|
1635 |
+
- type: recall_at_1
|
1636 |
+
value: 6.232
|
1637 |
+
- type: recall_at_10
|
1638 |
+
value: 18.137
|
1639 |
+
- type: recall_at_100
|
1640 |
+
value: 36.101
|
1641 |
+
- type: recall_at_1000
|
1642 |
+
value: 68.733
|
1643 |
+
- type: recall_at_3
|
1644 |
+
value: 10.978
|
1645 |
+
- type: recall_at_5
|
1646 |
+
value: 13.718
|
1647 |
+
- task:
|
1648 |
+
type: Retrieval
|
1649 |
+
dataset:
|
1650 |
+
type: mteb/nq
|
1651 |
+
name: MTEB NQ
|
1652 |
+
config: default
|
1653 |
+
split: test
|
1654 |
+
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
|
1655 |
+
metrics:
|
1656 |
+
- type: map_at_1
|
1657 |
+
value: 35.545
|
1658 |
+
- type: map_at_10
|
1659 |
+
value: 52.083
|
1660 |
+
- type: map_at_100
|
1661 |
+
value: 52.954
|
1662 |
+
- type: map_at_1000
|
1663 |
+
value: 52.96999999999999
|
1664 |
+
- type: map_at_3
|
1665 |
+
value: 47.508
|
1666 |
+
- type: map_at_5
|
1667 |
+
value: 50.265
|
1668 |
+
- type: mrr_at_1
|
1669 |
+
value: 40.122
|
1670 |
+
- type: mrr_at_10
|
1671 |
+
value: 54.567
|
1672 |
+
- type: mrr_at_100
|
1673 |
+
value: 55.19199999999999
|
1674 |
+
- type: mrr_at_1000
|
1675 |
+
value: 55.204
|
1676 |
+
- type: mrr_at_3
|
1677 |
+
value: 51.043000000000006
|
1678 |
+
- type: mrr_at_5
|
1679 |
+
value: 53.233
|
1680 |
+
- type: ndcg_at_1
|
1681 |
+
value: 40.122
|
1682 |
+
- type: ndcg_at_10
|
1683 |
+
value: 60.012
|
1684 |
+
- type: ndcg_at_100
|
1685 |
+
value: 63.562
|
1686 |
+
- type: ndcg_at_1000
|
1687 |
+
value: 63.94
|
1688 |
+
- type: ndcg_at_3
|
1689 |
+
value: 51.681
|
1690 |
+
- type: ndcg_at_5
|
1691 |
+
value: 56.154
|
1692 |
+
- type: precision_at_1
|
1693 |
+
value: 40.122
|
1694 |
+
- type: precision_at_10
|
1695 |
+
value: 9.774
|
1696 |
+
- type: precision_at_100
|
1697 |
+
value: 1.176
|
1698 |
+
- type: precision_at_1000
|
1699 |
+
value: 0.121
|
1700 |
+
- type: precision_at_3
|
1701 |
+
value: 23.426
|
1702 |
+
- type: precision_at_5
|
1703 |
+
value: 16.686
|
1704 |
+
- type: recall_at_1
|
1705 |
+
value: 35.545
|
1706 |
+
- type: recall_at_10
|
1707 |
+
value: 81.557
|
1708 |
+
- type: recall_at_100
|
1709 |
+
value: 96.729
|
1710 |
+
- type: recall_at_1000
|
1711 |
+
value: 99.541
|
1712 |
+
- type: recall_at_3
|
1713 |
+
value: 60.185
|
1714 |
+
- type: recall_at_5
|
1715 |
+
value: 70.411
|
1716 |
+
- task:
|
1717 |
+
type: Retrieval
|
1718 |
+
dataset:
|
1719 |
+
type: mteb/quora
|
1720 |
+
name: MTEB QuoraRetrieval
|
1721 |
+
config: default
|
1722 |
+
split: test
|
1723 |
+
revision: None
|
1724 |
+
metrics:
|
1725 |
+
- type: map_at_1
|
1726 |
+
value: 68.908
|
1727 |
+
- type: map_at_10
|
1728 |
+
value: 83.19
|
1729 |
+
- type: map_at_100
|
1730 |
+
value: 83.842
|
1731 |
+
- type: map_at_1000
|
1732 |
+
value: 83.858
|
1733 |
+
- type: map_at_3
|
1734 |
+
value: 80.167
|
1735 |
+
- type: map_at_5
|
1736 |
+
value: 82.053
|
1737 |
+
- type: mrr_at_1
|
1738 |
+
value: 79.46
|
1739 |
+
- type: mrr_at_10
|
1740 |
+
value: 86.256
|
1741 |
+
- type: mrr_at_100
|
1742 |
+
value: 86.37
|
1743 |
+
- type: mrr_at_1000
|
1744 |
+
value: 86.371
|
1745 |
+
- type: mrr_at_3
|
1746 |
+
value: 85.177
|
1747 |
+
- type: mrr_at_5
|
1748 |
+
value: 85.908
|
1749 |
+
- type: ndcg_at_1
|
1750 |
+
value: 79.5
|
1751 |
+
- type: ndcg_at_10
|
1752 |
+
value: 87.244
|
1753 |
+
- type: ndcg_at_100
|
1754 |
+
value: 88.532
|
1755 |
+
- type: ndcg_at_1000
|
1756 |
+
value: 88.626
|
1757 |
+
- type: ndcg_at_3
|
1758 |
+
value: 84.161
|
1759 |
+
- type: ndcg_at_5
|
1760 |
+
value: 85.835
|
1761 |
+
- type: precision_at_1
|
1762 |
+
value: 79.5
|
1763 |
+
- type: precision_at_10
|
1764 |
+
value: 13.339
|
1765 |
+
- type: precision_at_100
|
1766 |
+
value: 1.53
|
1767 |
+
- type: precision_at_1000
|
1768 |
+
value: 0.157
|
1769 |
+
- type: precision_at_3
|
1770 |
+
value: 36.97
|
1771 |
+
- type: precision_at_5
|
1772 |
+
value: 24.384
|
1773 |
+
- type: recall_at_1
|
1774 |
+
value: 68.908
|
1775 |
+
- type: recall_at_10
|
1776 |
+
value: 95.179
|
1777 |
+
- type: recall_at_100
|
1778 |
+
value: 99.579
|
1779 |
+
- type: recall_at_1000
|
1780 |
+
value: 99.964
|
1781 |
+
- type: recall_at_3
|
1782 |
+
value: 86.424
|
1783 |
+
- type: recall_at_5
|
1784 |
+
value: 91.065
|
1785 |
+
- task:
|
1786 |
+
type: Clustering
|
1787 |
+
dataset:
|
1788 |
+
type: mteb/reddit-clustering
|
1789 |
+
name: MTEB RedditClustering
|
1790 |
+
config: default
|
1791 |
+
split: test
|
1792 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1793 |
+
metrics:
|
1794 |
+
- type: v_measure
|
1795 |
+
value: 65.17897847862794
|
1796 |
+
- task:
|
1797 |
+
type: Clustering
|
1798 |
+
dataset:
|
1799 |
+
type: mteb/reddit-clustering-p2p
|
1800 |
+
name: MTEB RedditClusteringP2P
|
1801 |
+
config: default
|
1802 |
+
split: test
|
1803 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1804 |
+
metrics:
|
1805 |
+
- type: v_measure
|
1806 |
+
value: 66.22194961632586
|
1807 |
+
- task:
|
1808 |
+
type: Retrieval
|
1809 |
+
dataset:
|
1810 |
+
type: mteb/scidocs
|
1811 |
+
name: MTEB SCIDOCS
|
1812 |
+
config: default
|
1813 |
+
split: test
|
1814 |
+
revision: None
|
1815 |
+
metrics:
|
1816 |
+
- type: map_at_1
|
1817 |
+
value: 5.668
|
1818 |
+
- type: map_at_10
|
1819 |
+
value: 13.921
|
1820 |
+
- type: map_at_100
|
1821 |
+
value: 16.391
|
1822 |
+
- type: map_at_1000
|
1823 |
+
value: 16.749
|
1824 |
+
- type: map_at_3
|
1825 |
+
value: 10.001999999999999
|
1826 |
+
- type: map_at_5
|
1827 |
+
value: 11.974
|
1828 |
+
- type: mrr_at_1
|
1829 |
+
value: 27.800000000000004
|
1830 |
+
- type: mrr_at_10
|
1831 |
+
value: 39.290000000000006
|
1832 |
+
- type: mrr_at_100
|
1833 |
+
value: 40.313
|
1834 |
+
- type: mrr_at_1000
|
1835 |
+
value: 40.355999999999995
|
1836 |
+
- type: mrr_at_3
|
1837 |
+
value: 35.667
|
1838 |
+
- type: mrr_at_5
|
1839 |
+
value: 37.742
|
1840 |
+
- type: ndcg_at_1
|
1841 |
+
value: 27.800000000000004
|
1842 |
+
- type: ndcg_at_10
|
1843 |
+
value: 23.172
|
1844 |
+
- type: ndcg_at_100
|
1845 |
+
value: 32.307
|
1846 |
+
- type: ndcg_at_1000
|
1847 |
+
value: 38.048
|
1848 |
+
- type: ndcg_at_3
|
1849 |
+
value: 22.043
|
1850 |
+
- type: ndcg_at_5
|
1851 |
+
value: 19.287000000000003
|
1852 |
+
- type: precision_at_1
|
1853 |
+
value: 27.800000000000004
|
1854 |
+
- type: precision_at_10
|
1855 |
+
value: 11.95
|
1856 |
+
- type: precision_at_100
|
1857 |
+
value: 2.5260000000000002
|
1858 |
+
- type: precision_at_1000
|
1859 |
+
value: 0.38999999999999996
|
1860 |
+
- type: precision_at_3
|
1861 |
+
value: 20.433
|
1862 |
+
- type: precision_at_5
|
1863 |
+
value: 16.84
|
1864 |
+
- type: recall_at_1
|
1865 |
+
value: 5.668
|
1866 |
+
- type: recall_at_10
|
1867 |
+
value: 24.22
|
1868 |
+
- type: recall_at_100
|
1869 |
+
value: 51.217
|
1870 |
+
- type: recall_at_1000
|
1871 |
+
value: 79.10000000000001
|
1872 |
+
- type: recall_at_3
|
1873 |
+
value: 12.443
|
1874 |
+
- type: recall_at_5
|
1875 |
+
value: 17.068
|
1876 |
+
- task:
|
1877 |
+
type: STS
|
1878 |
+
dataset:
|
1879 |
+
type: mteb/sickr-sts
|
1880 |
+
name: MTEB SICK-R
|
1881 |
+
config: default
|
1882 |
+
split: test
|
1883 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1884 |
+
metrics:
|
1885 |
+
- type: cos_sim_pearson
|
1886 |
+
value: 82.83535239748218
|
1887 |
+
- type: cos_sim_spearman
|
1888 |
+
value: 73.98553311584509
|
1889 |
+
- type: euclidean_pearson
|
1890 |
+
value: 79.57336200069007
|
1891 |
+
- type: euclidean_spearman
|
1892 |
+
value: 73.98553926018461
|
1893 |
+
- type: manhattan_pearson
|
1894 |
+
value: 79.02277757114132
|
1895 |
+
- type: manhattan_spearman
|
1896 |
+
value: 73.52350678760683
|
1897 |
+
- task:
|
1898 |
+
type: STS
|
1899 |
+
dataset:
|
1900 |
+
type: mteb/sts12-sts
|
1901 |
+
name: MTEB STS12
|
1902 |
+
config: default
|
1903 |
+
split: test
|
1904 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1905 |
+
metrics:
|
1906 |
+
- type: cos_sim_pearson
|
1907 |
+
value: 81.99055838690317
|
1908 |
+
- type: cos_sim_spearman
|
1909 |
+
value: 72.05290668592296
|
1910 |
+
- type: euclidean_pearson
|
1911 |
+
value: 81.7130610313565
|
1912 |
+
- type: euclidean_spearman
|
1913 |
+
value: 72.0529066787229
|
1914 |
+
- type: manhattan_pearson
|
1915 |
+
value: 82.09213883730894
|
1916 |
+
- type: manhattan_spearman
|
1917 |
+
value: 72.5171577483134
|
1918 |
+
- task:
|
1919 |
+
type: STS
|
1920 |
+
dataset:
|
1921 |
+
type: mteb/sts13-sts
|
1922 |
+
name: MTEB STS13
|
1923 |
+
config: default
|
1924 |
+
split: test
|
1925 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1926 |
+
metrics:
|
1927 |
+
- type: cos_sim_pearson
|
1928 |
+
value: 84.4685161191763
|
1929 |
+
- type: cos_sim_spearman
|
1930 |
+
value: 84.4847436140129
|
1931 |
+
- type: euclidean_pearson
|
1932 |
+
value: 84.05016757016948
|
1933 |
+
- type: euclidean_spearman
|
1934 |
+
value: 84.48474353891532
|
1935 |
+
- type: manhattan_pearson
|
1936 |
+
value: 83.83064062713048
|
1937 |
+
- type: manhattan_spearman
|
1938 |
+
value: 84.30431591842805
|
1939 |
+
- task:
|
1940 |
+
type: STS
|
1941 |
+
dataset:
|
1942 |
+
type: mteb/sts14-sts
|
1943 |
+
name: MTEB STS14
|
1944 |
+
config: default
|
1945 |
+
split: test
|
1946 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1947 |
+
metrics:
|
1948 |
+
- type: cos_sim_pearson
|
1949 |
+
value: 83.00171021092486
|
1950 |
+
- type: cos_sim_spearman
|
1951 |
+
value: 77.91329577609622
|
1952 |
+
- type: euclidean_pearson
|
1953 |
+
value: 81.49758593915315
|
1954 |
+
- type: euclidean_spearman
|
1955 |
+
value: 77.91329577609622
|
1956 |
+
- type: manhattan_pearson
|
1957 |
+
value: 81.23255996803785
|
1958 |
+
- type: manhattan_spearman
|
1959 |
+
value: 77.80027024941825
|
1960 |
+
- task:
|
1961 |
+
type: STS
|
1962 |
+
dataset:
|
1963 |
+
type: mteb/sts15-sts
|
1964 |
+
name: MTEB STS15
|
1965 |
+
config: default
|
1966 |
+
split: test
|
1967 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
1968 |
+
metrics:
|
1969 |
+
- type: cos_sim_pearson
|
1970 |
+
value: 86.62608607472492
|
1971 |
+
- type: cos_sim_spearman
|
1972 |
+
value: 87.62293916855751
|
1973 |
+
- type: euclidean_pearson
|
1974 |
+
value: 87.04313886714989
|
1975 |
+
- type: euclidean_spearman
|
1976 |
+
value: 87.62293907119869
|
1977 |
+
- type: manhattan_pearson
|
1978 |
+
value: 86.97266321040769
|
1979 |
+
- type: manhattan_spearman
|
1980 |
+
value: 87.61807042381702
|
1981 |
+
- task:
|
1982 |
+
type: STS
|
1983 |
+
dataset:
|
1984 |
+
type: mteb/sts16-sts
|
1985 |
+
name: MTEB STS16
|
1986 |
+
config: default
|
1987 |
+
split: test
|
1988 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
1989 |
+
metrics:
|
1990 |
+
- type: cos_sim_pearson
|
1991 |
+
value: 80.8012095789289
|
1992 |
+
- type: cos_sim_spearman
|
1993 |
+
value: 81.91868918081325
|
1994 |
+
- type: euclidean_pearson
|
1995 |
+
value: 81.2267973811213
|
1996 |
+
- type: euclidean_spearman
|
1997 |
+
value: 81.91868918081325
|
1998 |
+
- type: manhattan_pearson
|
1999 |
+
value: 81.0173457901168
|
2000 |
+
- type: manhattan_spearman
|
2001 |
+
value: 81.79743115887055
|
2002 |
+
- task:
|
2003 |
+
type: STS
|
2004 |
+
dataset:
|
2005 |
+
type: mteb/sts17-crosslingual-sts
|
2006 |
+
name: MTEB STS17 (en-en)
|
2007 |
+
config: en-en
|
2008 |
+
split: test
|
2009 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2010 |
+
metrics:
|
2011 |
+
- type: cos_sim_pearson
|
2012 |
+
value: 88.39698537303725
|
2013 |
+
- type: cos_sim_spearman
|
2014 |
+
value: 88.78668529808967
|
2015 |
+
- type: euclidean_pearson
|
2016 |
+
value: 88.78863351718252
|
2017 |
+
- type: euclidean_spearman
|
2018 |
+
value: 88.78668529808967
|
2019 |
+
- type: manhattan_pearson
|
2020 |
+
value: 88.41678215762478
|
2021 |
+
- type: manhattan_spearman
|
2022 |
+
value: 88.3827998418763
|
2023 |
+
- task:
|
2024 |
+
type: STS
|
2025 |
+
dataset:
|
2026 |
+
type: mteb/sts22-crosslingual-sts
|
2027 |
+
name: MTEB STS22 (en)
|
2028 |
+
config: en
|
2029 |
+
split: test
|
2030 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
2031 |
+
metrics:
|
2032 |
+
- type: cos_sim_pearson
|
2033 |
+
value: 68.49024974161408
|
2034 |
+
- type: cos_sim_spearman
|
2035 |
+
value: 69.19917146180619
|
2036 |
+
- type: euclidean_pearson
|
2037 |
+
value: 70.48882819806336
|
2038 |
+
- type: euclidean_spearman
|
2039 |
+
value: 69.19917146180619
|
2040 |
+
- type: manhattan_pearson
|
2041 |
+
value: 70.86827961779932
|
2042 |
+
- type: manhattan_spearman
|
2043 |
+
value: 69.38456983992613
|
2044 |
+
- task:
|
2045 |
+
type: STS
|
2046 |
+
dataset:
|
2047 |
+
type: mteb/stsbenchmark-sts
|
2048 |
+
name: MTEB STSBenchmark
|
2049 |
+
config: default
|
2050 |
+
split: test
|
2051 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2052 |
+
metrics:
|
2053 |
+
- type: cos_sim_pearson
|
2054 |
+
value: 84.31376078795105
|
2055 |
+
- type: cos_sim_spearman
|
2056 |
+
value: 83.3985199217591
|
2057 |
+
- type: euclidean_pearson
|
2058 |
+
value: 84.06630133719332
|
2059 |
+
- type: euclidean_spearman
|
2060 |
+
value: 83.3985199217591
|
2061 |
+
- type: manhattan_pearson
|
2062 |
+
value: 83.7896654474364
|
2063 |
+
- type: manhattan_spearman
|
2064 |
+
value: 83.1885039212299
|
2065 |
+
- task:
|
2066 |
+
type: Reranking
|
2067 |
+
dataset:
|
2068 |
+
type: mteb/scidocs-reranking
|
2069 |
+
name: MTEB SciDocsRR
|
2070 |
+
config: default
|
2071 |
+
split: test
|
2072 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2073 |
+
metrics:
|
2074 |
+
- type: map
|
2075 |
+
value: 85.83161002188668
|
2076 |
+
- type: mrr
|
2077 |
+
value: 96.19253114351153
|
2078 |
+
- task:
|
2079 |
+
type: Retrieval
|
2080 |
+
dataset:
|
2081 |
+
type: mteb/scifact
|
2082 |
+
name: MTEB SciFact
|
2083 |
+
config: default
|
2084 |
+
split: test
|
2085 |
+
revision: 0228b52cf27578f30900b9e5271d331663a030d7
|
2086 |
+
metrics:
|
2087 |
+
- type: map_at_1
|
2088 |
+
value: 48.132999999999996
|
2089 |
+
- type: map_at_10
|
2090 |
+
value: 58.541
|
2091 |
+
- type: map_at_100
|
2092 |
+
value: 59.34
|
2093 |
+
- type: map_at_1000
|
2094 |
+
value: 59.367999999999995
|
2095 |
+
- type: map_at_3
|
2096 |
+
value: 55.191
|
2097 |
+
- type: map_at_5
|
2098 |
+
value: 57.084
|
2099 |
+
- type: mrr_at_1
|
2100 |
+
value: 51.0
|
2101 |
+
- type: mrr_at_10
|
2102 |
+
value: 59.858
|
2103 |
+
- type: mrr_at_100
|
2104 |
+
value: 60.474000000000004
|
2105 |
+
- type: mrr_at_1000
|
2106 |
+
value: 60.501000000000005
|
2107 |
+
- type: mrr_at_3
|
2108 |
+
value: 57.111000000000004
|
2109 |
+
- type: mrr_at_5
|
2110 |
+
value: 58.694
|
2111 |
+
- type: ndcg_at_1
|
2112 |
+
value: 51.0
|
2113 |
+
- type: ndcg_at_10
|
2114 |
+
value: 63.817
|
2115 |
+
- type: ndcg_at_100
|
2116 |
+
value: 67.229
|
2117 |
+
- type: ndcg_at_1000
|
2118 |
+
value: 67.94
|
2119 |
+
- type: ndcg_at_3
|
2120 |
+
value: 57.896
|
2121 |
+
- type: ndcg_at_5
|
2122 |
+
value: 60.785999999999994
|
2123 |
+
- type: precision_at_1
|
2124 |
+
value: 51.0
|
2125 |
+
- type: precision_at_10
|
2126 |
+
value: 8.933
|
2127 |
+
- type: precision_at_100
|
2128 |
+
value: 1.0699999999999998
|
2129 |
+
- type: precision_at_1000
|
2130 |
+
value: 0.11299999999999999
|
2131 |
+
- type: precision_at_3
|
2132 |
+
value: 23.111
|
2133 |
+
- type: precision_at_5
|
2134 |
+
value: 15.733
|
2135 |
+
- type: recall_at_1
|
2136 |
+
value: 48.132999999999996
|
2137 |
+
- type: recall_at_10
|
2138 |
+
value: 78.922
|
2139 |
+
- type: recall_at_100
|
2140 |
+
value: 94.167
|
2141 |
+
- type: recall_at_1000
|
2142 |
+
value: 99.667
|
2143 |
+
- type: recall_at_3
|
2144 |
+
value: 62.806
|
2145 |
+
- type: recall_at_5
|
2146 |
+
value: 70.078
|
2147 |
+
- task:
|
2148 |
+
type: PairClassification
|
2149 |
+
dataset:
|
2150 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2151 |
+
name: MTEB SprintDuplicateQuestions
|
2152 |
+
config: default
|
2153 |
+
split: test
|
2154 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2155 |
+
metrics:
|
2156 |
+
- type: cos_sim_accuracy
|
2157 |
+
value: 99.88415841584158
|
2158 |
+
- type: cos_sim_ap
|
2159 |
+
value: 97.72557886493401
|
2160 |
+
- type: cos_sim_f1
|
2161 |
+
value: 94.1294530858003
|
2162 |
+
- type: cos_sim_precision
|
2163 |
+
value: 94.46122860020141
|
2164 |
+
- type: cos_sim_recall
|
2165 |
+
value: 93.8
|
2166 |
+
- type: dot_accuracy
|
2167 |
+
value: 99.88415841584158
|
2168 |
+
- type: dot_ap
|
2169 |
+
value: 97.72557439066108
|
2170 |
+
- type: dot_f1
|
2171 |
+
value: 94.1294530858003
|
2172 |
+
- type: dot_precision
|
2173 |
+
value: 94.46122860020141
|
2174 |
+
- type: dot_recall
|
2175 |
+
value: 93.8
|
2176 |
+
- type: euclidean_accuracy
|
2177 |
+
value: 99.88415841584158
|
2178 |
+
- type: euclidean_ap
|
2179 |
+
value: 97.72557439066108
|
2180 |
+
- type: euclidean_f1
|
2181 |
+
value: 94.1294530858003
|
2182 |
+
- type: euclidean_precision
|
2183 |
+
value: 94.46122860020141
|
2184 |
+
- type: euclidean_recall
|
2185 |
+
value: 93.8
|
2186 |
+
- type: manhattan_accuracy
|
2187 |
+
value: 99.88514851485148
|
2188 |
+
- type: manhattan_ap
|
2189 |
+
value: 97.73324334051959
|
2190 |
+
- type: manhattan_f1
|
2191 |
+
value: 94.1825476429288
|
2192 |
+
- type: manhattan_precision
|
2193 |
+
value: 94.46680080482898
|
2194 |
+
- type: manhattan_recall
|
2195 |
+
value: 93.89999999999999
|
2196 |
+
- type: max_accuracy
|
2197 |
+
value: 99.88514851485148
|
2198 |
+
- type: max_ap
|
2199 |
+
value: 97.73324334051959
|
2200 |
+
- type: max_f1
|
2201 |
+
value: 94.1825476429288
|
2202 |
+
- task:
|
2203 |
+
type: Clustering
|
2204 |
+
dataset:
|
2205 |
+
type: mteb/stackexchange-clustering
|
2206 |
+
name: MTEB StackExchangeClustering
|
2207 |
+
config: default
|
2208 |
+
split: test
|
2209 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2210 |
+
metrics:
|
2211 |
+
- type: v_measure
|
2212 |
+
value: 72.8168026381278
|
2213 |
+
- task:
|
2214 |
+
type: Clustering
|
2215 |
+
dataset:
|
2216 |
+
type: mteb/stackexchange-clustering-p2p
|
2217 |
+
name: MTEB StackExchangeClusteringP2P
|
2218 |
+
config: default
|
2219 |
+
split: test
|
2220 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2221 |
+
metrics:
|
2222 |
+
- type: v_measure
|
2223 |
+
value: 44.30948635130784
|
2224 |
+
- task:
|
2225 |
+
type: Reranking
|
2226 |
+
dataset:
|
2227 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2228 |
+
name: MTEB StackOverflowDupQuestions
|
2229 |
+
config: default
|
2230 |
+
split: test
|
2231 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2232 |
+
metrics:
|
2233 |
+
- type: map
|
2234 |
+
value: 54.11268548719803
|
2235 |
+
- type: mrr
|
2236 |
+
value: 55.08079747050335
|
2237 |
+
- task:
|
2238 |
+
type: Summarization
|
2239 |
+
dataset:
|
2240 |
+
type: mteb/summeval
|
2241 |
+
name: MTEB SummEval
|
2242 |
+
config: default
|
2243 |
+
split: test
|
2244 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2245 |
+
metrics:
|
2246 |
+
- type: cos_sim_pearson
|
2247 |
+
value: 30.82885852096243
|
2248 |
+
- type: cos_sim_spearman
|
2249 |
+
value: 30.800770979226076
|
2250 |
+
- type: dot_pearson
|
2251 |
+
value: 30.82885608827704
|
2252 |
+
- type: dot_spearman
|
2253 |
+
value: 30.800770979226076
|
2254 |
+
- task:
|
2255 |
+
type: Retrieval
|
2256 |
+
dataset:
|
2257 |
+
type: mteb/trec-covid
|
2258 |
+
name: MTEB TRECCOVID
|
2259 |
+
config: default
|
2260 |
+
split: test
|
2261 |
+
revision: None
|
2262 |
+
metrics:
|
2263 |
+
- type: map_at_1
|
2264 |
+
value: 0.20400000000000001
|
2265 |
+
- type: map_at_10
|
2266 |
+
value: 1.27
|
2267 |
+
- type: map_at_100
|
2268 |
+
value: 7.993
|
2269 |
+
- type: map_at_1000
|
2270 |
+
value: 20.934
|
2271 |
+
- type: map_at_3
|
2272 |
+
value: 0.469
|
2273 |
+
- type: map_at_5
|
2274 |
+
value: 0.716
|
2275 |
+
- type: mrr_at_1
|
2276 |
+
value: 76.0
|
2277 |
+
- type: mrr_at_10
|
2278 |
+
value: 84.967
|
2279 |
+
- type: mrr_at_100
|
2280 |
+
value: 84.967
|
2281 |
+
- type: mrr_at_1000
|
2282 |
+
value: 84.967
|
2283 |
+
- type: mrr_at_3
|
2284 |
+
value: 83.667
|
2285 |
+
- type: mrr_at_5
|
2286 |
+
value: 84.967
|
2287 |
+
- type: ndcg_at_1
|
2288 |
+
value: 69.0
|
2289 |
+
- type: ndcg_at_10
|
2290 |
+
value: 59.243
|
2291 |
+
- type: ndcg_at_100
|
2292 |
+
value: 48.784
|
2293 |
+
- type: ndcg_at_1000
|
2294 |
+
value: 46.966
|
2295 |
+
- type: ndcg_at_3
|
2296 |
+
value: 64.14
|
2297 |
+
- type: ndcg_at_5
|
2298 |
+
value: 61.60600000000001
|
2299 |
+
- type: precision_at_1
|
2300 |
+
value: 76.0
|
2301 |
+
- type: precision_at_10
|
2302 |
+
value: 62.6
|
2303 |
+
- type: precision_at_100
|
2304 |
+
value: 50.18
|
2305 |
+
- type: precision_at_1000
|
2306 |
+
value: 21.026
|
2307 |
+
- type: precision_at_3
|
2308 |
+
value: 68.667
|
2309 |
+
- type: precision_at_5
|
2310 |
+
value: 66.0
|
2311 |
+
- type: recall_at_1
|
2312 |
+
value: 0.20400000000000001
|
2313 |
+
- type: recall_at_10
|
2314 |
+
value: 1.582
|
2315 |
+
- type: recall_at_100
|
2316 |
+
value: 11.988
|
2317 |
+
- type: recall_at_1000
|
2318 |
+
value: 44.994
|
2319 |
+
- type: recall_at_3
|
2320 |
+
value: 0.515
|
2321 |
+
- type: recall_at_5
|
2322 |
+
value: 0.844
|
2323 |
+
- task:
|
2324 |
+
type: Retrieval
|
2325 |
+
dataset:
|
2326 |
+
type: mteb/touche2020
|
2327 |
+
name: MTEB Touche2020
|
2328 |
+
config: default
|
2329 |
+
split: test
|
2330 |
+
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
|
2331 |
+
metrics:
|
2332 |
+
- type: map_at_1
|
2333 |
+
value: 3.3009999999999997
|
2334 |
+
- type: map_at_10
|
2335 |
+
value: 11.566
|
2336 |
+
- type: map_at_100
|
2337 |
+
value: 17.645
|
2338 |
+
- type: map_at_1000
|
2339 |
+
value: 19.206
|
2340 |
+
- type: map_at_3
|
2341 |
+
value: 6.986000000000001
|
2342 |
+
- type: map_at_5
|
2343 |
+
value: 8.716
|
2344 |
+
- type: mrr_at_1
|
2345 |
+
value: 42.857
|
2346 |
+
- type: mrr_at_10
|
2347 |
+
value: 58.287
|
2348 |
+
- type: mrr_at_100
|
2349 |
+
value: 59.111000000000004
|
2350 |
+
- type: mrr_at_1000
|
2351 |
+
value: 59.111000000000004
|
2352 |
+
- type: mrr_at_3
|
2353 |
+
value: 55.102
|
2354 |
+
- type: mrr_at_5
|
2355 |
+
value: 57.449
|
2356 |
+
- type: ndcg_at_1
|
2357 |
+
value: 39.796
|
2358 |
+
- type: ndcg_at_10
|
2359 |
+
value: 29.059
|
2360 |
+
- type: ndcg_at_100
|
2361 |
+
value: 40.629
|
2362 |
+
- type: ndcg_at_1000
|
2363 |
+
value: 51.446000000000005
|
2364 |
+
- type: ndcg_at_3
|
2365 |
+
value: 36.254999999999995
|
2366 |
+
- type: ndcg_at_5
|
2367 |
+
value: 32.216
|
2368 |
+
- type: precision_at_1
|
2369 |
+
value: 42.857
|
2370 |
+
- type: precision_at_10
|
2371 |
+
value: 23.469
|
2372 |
+
- type: precision_at_100
|
2373 |
+
value: 8.041
|
2374 |
+
- type: precision_at_1000
|
2375 |
+
value: 1.551
|
2376 |
+
- type: precision_at_3
|
2377 |
+
value: 36.735
|
2378 |
+
- type: precision_at_5
|
2379 |
+
value: 30.203999999999997
|
2380 |
+
- type: recall_at_1
|
2381 |
+
value: 3.3009999999999997
|
2382 |
+
- type: recall_at_10
|
2383 |
+
value: 17.267
|
2384 |
+
- type: recall_at_100
|
2385 |
+
value: 49.36
|
2386 |
+
- type: recall_at_1000
|
2387 |
+
value: 83.673
|
2388 |
+
- type: recall_at_3
|
2389 |
+
value: 8.049000000000001
|
2390 |
+
- type: recall_at_5
|
2391 |
+
value: 11.379999999999999
|
2392 |
+
- task:
|
2393 |
+
type: Classification
|
2394 |
+
dataset:
|
2395 |
+
type: mteb/toxic_conversations_50k
|
2396 |
+
name: MTEB ToxicConversationsClassification
|
2397 |
+
config: default
|
2398 |
+
split: test
|
2399 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2400 |
+
metrics:
|
2401 |
+
- type: accuracy
|
2402 |
+
value: 88.7576
|
2403 |
+
- type: ap
|
2404 |
+
value: 35.52110634325751
|
2405 |
+
- type: f1
|
2406 |
+
value: 74.14476947482417
|
2407 |
+
- task:
|
2408 |
+
type: Classification
|
2409 |
+
dataset:
|
2410 |
+
type: mteb/tweet_sentiment_extraction
|
2411 |
+
name: MTEB TweetSentimentExtractionClassification
|
2412 |
+
config: default
|
2413 |
+
split: test
|
2414 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2415 |
+
metrics:
|
2416 |
+
- type: accuracy
|
2417 |
+
value: 73.52009054895304
|
2418 |
+
- type: f1
|
2419 |
+
value: 73.81407409876577
|
2420 |
+
- task:
|
2421 |
+
type: Clustering
|
2422 |
+
dataset:
|
2423 |
+
type: mteb/twentynewsgroups-clustering
|
2424 |
+
name: MTEB TwentyNewsgroupsClustering
|
2425 |
+
config: default
|
2426 |
+
split: test
|
2427 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2428 |
+
metrics:
|
2429 |
+
- type: v_measure
|
2430 |
+
value: 54.35358706465052
|
2431 |
+
- task:
|
2432 |
+
type: PairClassification
|
2433 |
+
dataset:
|
2434 |
+
type: mteb/twittersemeval2015-pairclassification
|
2435 |
+
name: MTEB TwitterSemEval2015
|
2436 |
+
config: default
|
2437 |
+
split: test
|
2438 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2439 |
+
metrics:
|
2440 |
+
- type: cos_sim_accuracy
|
2441 |
+
value: 83.65619598259522
|
2442 |
+
- type: cos_sim_ap
|
2443 |
+
value: 65.824087818991
|
2444 |
+
- type: cos_sim_f1
|
2445 |
+
value: 61.952620244077536
|
2446 |
+
- type: cos_sim_precision
|
2447 |
+
value: 56.676882661996494
|
2448 |
+
- type: cos_sim_recall
|
2449 |
+
value: 68.311345646438
|
2450 |
+
- type: dot_accuracy
|
2451 |
+
value: 83.65619598259522
|
2452 |
+
- type: dot_ap
|
2453 |
+
value: 65.82406256999921
|
2454 |
+
- type: dot_f1
|
2455 |
+
value: 61.952620244077536
|
2456 |
+
- type: dot_precision
|
2457 |
+
value: 56.676882661996494
|
2458 |
+
- type: dot_recall
|
2459 |
+
value: 68.311345646438
|
2460 |
+
- type: euclidean_accuracy
|
2461 |
+
value: 83.65619598259522
|
2462 |
+
- type: euclidean_ap
|
2463 |
+
value: 65.82409143427542
|
2464 |
+
- type: euclidean_f1
|
2465 |
+
value: 61.952620244077536
|
2466 |
+
- type: euclidean_precision
|
2467 |
+
value: 56.676882661996494
|
2468 |
+
- type: euclidean_recall
|
2469 |
+
value: 68.311345646438
|
2470 |
+
- type: manhattan_accuracy
|
2471 |
+
value: 83.4296954163438
|
2472 |
+
- type: manhattan_ap
|
2473 |
+
value: 65.20662449614932
|
2474 |
+
- type: manhattan_f1
|
2475 |
+
value: 61.352885525070946
|
2476 |
+
- type: manhattan_precision
|
2477 |
+
value: 55.59365623660523
|
2478 |
+
- type: manhattan_recall
|
2479 |
+
value: 68.44327176781002
|
2480 |
+
- type: max_accuracy
|
2481 |
+
value: 83.65619598259522
|
2482 |
+
- type: max_ap
|
2483 |
+
value: 65.82409143427542
|
2484 |
+
- type: max_f1
|
2485 |
+
value: 61.952620244077536
|
2486 |
+
- task:
|
2487 |
+
type: PairClassification
|
2488 |
+
dataset:
|
2489 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2490 |
+
name: MTEB TwitterURLCorpus
|
2491 |
+
config: default
|
2492 |
+
split: test
|
2493 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2494 |
+
metrics:
|
2495 |
+
- type: cos_sim_accuracy
|
2496 |
+
value: 87.90119144642372
|
2497 |
+
- type: cos_sim_ap
|
2498 |
+
value: 84.04753852793387
|
2499 |
+
- type: cos_sim_f1
|
2500 |
+
value: 76.27737226277372
|
2501 |
+
- type: cos_sim_precision
|
2502 |
+
value: 73.86757068667052
|
2503 |
+
- type: cos_sim_recall
|
2504 |
+
value: 78.84970742223591
|
2505 |
+
- type: dot_accuracy
|
2506 |
+
value: 87.90119144642372
|
2507 |
+
- type: dot_ap
|
2508 |
+
value: 84.04753668117337
|
2509 |
+
- type: dot_f1
|
2510 |
+
value: 76.27737226277372
|
2511 |
+
- type: dot_precision
|
2512 |
+
value: 73.86757068667052
|
2513 |
+
- type: dot_recall
|
2514 |
+
value: 78.84970742223591
|
2515 |
+
- type: euclidean_accuracy
|
2516 |
+
value: 87.90119144642372
|
2517 |
+
- type: euclidean_ap
|
2518 |
+
value: 84.04754553468206
|
2519 |
+
- type: euclidean_f1
|
2520 |
+
value: 76.27737226277372
|
2521 |
+
- type: euclidean_precision
|
2522 |
+
value: 73.86757068667052
|
2523 |
+
- type: euclidean_recall
|
2524 |
+
value: 78.84970742223591
|
2525 |
+
- type: manhattan_accuracy
|
2526 |
+
value: 87.87014398261343
|
2527 |
+
- type: manhattan_ap
|
2528 |
+
value: 84.05164646221583
|
2529 |
+
- type: manhattan_f1
|
2530 |
+
value: 76.31392706820128
|
2531 |
+
- type: manhattan_precision
|
2532 |
+
value: 73.91586694566708
|
2533 |
+
- type: manhattan_recall
|
2534 |
+
value: 78.87280566676932
|
2535 |
+
- type: max_accuracy
|
2536 |
+
value: 87.90119144642372
|
2537 |
+
- type: max_ap
|
2538 |
+
value: 84.05164646221583
|
2539 |
+
- type: max_f1
|
2540 |
+
value: 76.31392706820128
|
2541 |
+
- task:
|
2542 |
+
type: STS
|
2543 |
+
dataset:
|
2544 |
+
type: C-MTEB/AFQMC
|
2545 |
+
name: MTEB AFQMC
|
2546 |
+
config: default
|
2547 |
+
split: validation
|
2548 |
+
revision: b44c3b011063adb25877c13823db83bb193913c4
|
2549 |
+
metrics:
|
2550 |
+
- type: cos_sim_pearson
|
2551 |
+
value: 52.3123511272669
|
2552 |
+
- type: cos_sim_spearman
|
2553 |
+
value: 55.73207493107254
|
2554 |
+
- type: euclidean_pearson
|
2555 |
+
value: 53.95847274621819
|
2556 |
+
- type: euclidean_spearman
|
2557 |
+
value: 55.73207493107254
|
2558 |
+
- type: manhattan_pearson
|
2559 |
+
value: 53.720688490931124
|
2560 |
+
- type: manhattan_spearman
|
2561 |
+
value: 55.453911938689
|
2562 |
+
- task:
|
2563 |
+
type: STS
|
2564 |
+
dataset:
|
2565 |
+
type: C-MTEB/ATEC
|
2566 |
+
name: MTEB ATEC
|
2567 |
+
config: default
|
2568 |
+
split: test
|
2569 |
+
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
2570 |
+
metrics:
|
2571 |
+
- type: cos_sim_pearson
|
2572 |
+
value: 50.787428883419864
|
2573 |
+
- type: cos_sim_spearman
|
2574 |
+
value: 53.97343607668934
|
2575 |
+
- type: euclidean_pearson
|
2576 |
+
value: 55.12379889727461
|
2577 |
+
- type: euclidean_spearman
|
2578 |
+
value: 53.97343945403084
|
2579 |
+
- type: manhattan_pearson
|
2580 |
+
value: 54.95369694130932
|
2581 |
+
- type: manhattan_spearman
|
2582 |
+
value: 53.74165246349166
|
2583 |
+
- task:
|
2584 |
+
type: Classification
|
2585 |
+
dataset:
|
2586 |
+
type: mteb/amazon_reviews_multi
|
2587 |
+
name: MTEB AmazonReviewsClassification (zh)
|
2588 |
+
config: zh
|
2589 |
+
split: test
|
2590 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
2591 |
+
metrics:
|
2592 |
+
- type: accuracy
|
2593 |
+
value: 53.49
|
2594 |
+
- type: f1
|
2595 |
+
value: 51.576550662258434
|
2596 |
+
- task:
|
2597 |
+
type: STS
|
2598 |
+
dataset:
|
2599 |
+
type: C-MTEB/BQ
|
2600 |
+
name: MTEB BQ
|
2601 |
+
config: default
|
2602 |
+
split: test
|
2603 |
+
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
2604 |
+
metrics:
|
2605 |
+
- type: cos_sim_pearson
|
2606 |
+
value: 63.78770644319529
|
2607 |
+
- type: cos_sim_spearman
|
2608 |
+
value: 65.08813140587463
|
2609 |
+
- type: euclidean_pearson
|
2610 |
+
value: 63.92948559310832
|
2611 |
+
- type: euclidean_spearman
|
2612 |
+
value: 65.08813486997627
|
2613 |
+
- type: manhattan_pearson
|
2614 |
+
value: 63.55967028084246
|
2615 |
+
- type: manhattan_spearman
|
2616 |
+
value: 64.69692694499825
|
2617 |
+
- task:
|
2618 |
+
type: Clustering
|
2619 |
+
dataset:
|
2620 |
+
type: C-MTEB/CLSClusteringP2P
|
2621 |
+
name: MTEB CLSClusteringP2P
|
2622 |
+
config: default
|
2623 |
+
split: test
|
2624 |
+
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
2625 |
+
metrics:
|
2626 |
+
- type: v_measure
|
2627 |
+
value: 44.23533333311907
|
2628 |
+
- task:
|
2629 |
+
type: Clustering
|
2630 |
+
dataset:
|
2631 |
+
type: C-MTEB/CLSClusteringS2S
|
2632 |
+
name: MTEB CLSClusteringS2S
|
2633 |
+
config: default
|
2634 |
+
split: test
|
2635 |
+
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
2636 |
+
metrics:
|
2637 |
+
- type: v_measure
|
2638 |
+
value: 43.01114481307774
|
2639 |
+
- task:
|
2640 |
+
type: Reranking
|
2641 |
+
dataset:
|
2642 |
+
type: C-MTEB/CMedQAv1-reranking
|
2643 |
+
name: MTEB CMedQAv1
|
2644 |
+
config: default
|
2645 |
+
split: test
|
2646 |
+
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
2647 |
+
metrics:
|
2648 |
+
- type: map
|
2649 |
+
value: 86.4349853821696
|
2650 |
+
- type: mrr
|
2651 |
+
value: 88.80150793650795
|
2652 |
+
- task:
|
2653 |
+
type: Reranking
|
2654 |
+
dataset:
|
2655 |
+
type: C-MTEB/CMedQAv2-reranking
|
2656 |
+
name: MTEB CMedQAv2
|
2657 |
+
config: default
|
2658 |
+
split: test
|
2659 |
+
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
2660 |
+
metrics:
|
2661 |
+
- type: map
|
2662 |
+
value: 87.56417400982208
|
2663 |
+
- type: mrr
|
2664 |
+
value: 89.85813492063491
|
2665 |
+
- task:
|
2666 |
+
type: Retrieval
|
2667 |
+
dataset:
|
2668 |
+
type: C-MTEB/CmedqaRetrieval
|
2669 |
+
name: MTEB CmedqaRetrieval
|
2670 |
+
config: default
|
2671 |
+
split: dev
|
2672 |
+
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
2673 |
+
metrics:
|
2674 |
+
- type: map_at_1
|
2675 |
+
value: 24.871
|
2676 |
+
- type: map_at_10
|
2677 |
+
value: 37.208999999999996
|
2678 |
+
- type: map_at_100
|
2679 |
+
value: 38.993
|
2680 |
+
- type: map_at_1000
|
2681 |
+
value: 39.122
|
2682 |
+
- type: map_at_3
|
2683 |
+
value: 33.2
|
2684 |
+
- type: map_at_5
|
2685 |
+
value: 35.33
|
2686 |
+
- type: mrr_at_1
|
2687 |
+
value: 37.884
|
2688 |
+
- type: mrr_at_10
|
2689 |
+
value: 46.189
|
2690 |
+
- type: mrr_at_100
|
2691 |
+
value: 47.147
|
2692 |
+
- type: mrr_at_1000
|
2693 |
+
value: 47.195
|
2694 |
+
- type: mrr_at_3
|
2695 |
+
value: 43.728
|
2696 |
+
- type: mrr_at_5
|
2697 |
+
value: 44.994
|
2698 |
+
- type: ndcg_at_1
|
2699 |
+
value: 37.884
|
2700 |
+
- type: ndcg_at_10
|
2701 |
+
value: 43.878
|
2702 |
+
- type: ndcg_at_100
|
2703 |
+
value: 51.002
|
2704 |
+
- type: ndcg_at_1000
|
2705 |
+
value: 53.161
|
2706 |
+
- type: ndcg_at_3
|
2707 |
+
value: 38.729
|
2708 |
+
- type: ndcg_at_5
|
2709 |
+
value: 40.628
|
2710 |
+
- type: precision_at_1
|
2711 |
+
value: 37.884
|
2712 |
+
- type: precision_at_10
|
2713 |
+
value: 9.75
|
2714 |
+
- type: precision_at_100
|
2715 |
+
value: 1.558
|
2716 |
+
- type: precision_at_1000
|
2717 |
+
value: 0.183
|
2718 |
+
- type: precision_at_3
|
2719 |
+
value: 21.964
|
2720 |
+
- type: precision_at_5
|
2721 |
+
value: 15.719
|
2722 |
+
- type: recall_at_1
|
2723 |
+
value: 24.871
|
2724 |
+
- type: recall_at_10
|
2725 |
+
value: 54.615
|
2726 |
+
- type: recall_at_100
|
2727 |
+
value: 84.276
|
2728 |
+
- type: recall_at_1000
|
2729 |
+
value: 98.578
|
2730 |
+
- type: recall_at_3
|
2731 |
+
value: 38.936
|
2732 |
+
- type: recall_at_5
|
2733 |
+
value: 45.061
|
2734 |
+
- task:
|
2735 |
+
type: PairClassification
|
2736 |
+
dataset:
|
2737 |
+
type: C-MTEB/CMNLI
|
2738 |
+
name: MTEB Cmnli
|
2739 |
+
config: default
|
2740 |
+
split: validation
|
2741 |
+
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
2742 |
+
metrics:
|
2743 |
+
- type: cos_sim_accuracy
|
2744 |
+
value: 76.12748045700542
|
2745 |
+
- type: cos_sim_ap
|
2746 |
+
value: 84.47948419710998
|
2747 |
+
- type: cos_sim_f1
|
2748 |
+
value: 77.88108108108108
|
2749 |
+
- type: cos_sim_precision
|
2750 |
+
value: 72.43112809169516
|
2751 |
+
- type: cos_sim_recall
|
2752 |
+
value: 84.21790974982464
|
2753 |
+
- type: dot_accuracy
|
2754 |
+
value: 76.12748045700542
|
2755 |
+
- type: dot_ap
|
2756 |
+
value: 84.4933237839786
|
2757 |
+
- type: dot_f1
|
2758 |
+
value: 77.88108108108108
|
2759 |
+
- type: dot_precision
|
2760 |
+
value: 72.43112809169516
|
2761 |
+
- type: dot_recall
|
2762 |
+
value: 84.21790974982464
|
2763 |
+
- type: euclidean_accuracy
|
2764 |
+
value: 76.12748045700542
|
2765 |
+
- type: euclidean_ap
|
2766 |
+
value: 84.47947997540409
|
2767 |
+
- type: euclidean_f1
|
2768 |
+
value: 77.88108108108108
|
2769 |
+
- type: euclidean_precision
|
2770 |
+
value: 72.43112809169516
|
2771 |
+
- type: euclidean_recall
|
2772 |
+
value: 84.21790974982464
|
2773 |
+
- type: manhattan_accuracy
|
2774 |
+
value: 75.40589296452195
|
2775 |
+
- type: manhattan_ap
|
2776 |
+
value: 83.74383956930585
|
2777 |
+
- type: manhattan_f1
|
2778 |
+
value: 77.0983342289092
|
2779 |
+
- type: manhattan_precision
|
2780 |
+
value: 71.34049323786795
|
2781 |
+
- type: manhattan_recall
|
2782 |
+
value: 83.86719663315408
|
2783 |
+
- type: max_accuracy
|
2784 |
+
value: 76.12748045700542
|
2785 |
+
- type: max_ap
|
2786 |
+
value: 84.4933237839786
|
2787 |
+
- type: max_f1
|
2788 |
+
value: 77.88108108108108
|
2789 |
+
- task:
|
2790 |
+
type: Retrieval
|
2791 |
+
dataset:
|
2792 |
+
type: C-MTEB/CovidRetrieval
|
2793 |
+
name: MTEB CovidRetrieval
|
2794 |
+
config: default
|
2795 |
+
split: dev
|
2796 |
+
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
2797 |
+
metrics:
|
2798 |
+
- type: map_at_1
|
2799 |
+
value: 66.781
|
2800 |
+
- type: map_at_10
|
2801 |
+
value: 74.539
|
2802 |
+
- type: map_at_100
|
2803 |
+
value: 74.914
|
2804 |
+
- type: map_at_1000
|
2805 |
+
value: 74.921
|
2806 |
+
- type: map_at_3
|
2807 |
+
value: 72.734
|
2808 |
+
- type: map_at_5
|
2809 |
+
value: 73.788
|
2810 |
+
- type: mrr_at_1
|
2811 |
+
value: 66.913
|
2812 |
+
- type: mrr_at_10
|
2813 |
+
value: 74.543
|
2814 |
+
- type: mrr_at_100
|
2815 |
+
value: 74.914
|
2816 |
+
- type: mrr_at_1000
|
2817 |
+
value: 74.921
|
2818 |
+
- type: mrr_at_3
|
2819 |
+
value: 72.831
|
2820 |
+
- type: mrr_at_5
|
2821 |
+
value: 73.76899999999999
|
2822 |
+
- type: ndcg_at_1
|
2823 |
+
value: 67.018
|
2824 |
+
- type: ndcg_at_10
|
2825 |
+
value: 78.34299999999999
|
2826 |
+
- type: ndcg_at_100
|
2827 |
+
value: 80.138
|
2828 |
+
- type: ndcg_at_1000
|
2829 |
+
value: 80.322
|
2830 |
+
- type: ndcg_at_3
|
2831 |
+
value: 74.667
|
2832 |
+
- type: ndcg_at_5
|
2833 |
+
value: 76.518
|
2834 |
+
- type: precision_at_1
|
2835 |
+
value: 67.018
|
2836 |
+
- type: precision_at_10
|
2837 |
+
value: 9.115
|
2838 |
+
- type: precision_at_100
|
2839 |
+
value: 0.996
|
2840 |
+
- type: precision_at_1000
|
2841 |
+
value: 0.101
|
2842 |
+
- type: precision_at_3
|
2843 |
+
value: 26.906000000000002
|
2844 |
+
- type: precision_at_5
|
2845 |
+
value: 17.092
|
2846 |
+
- type: recall_at_1
|
2847 |
+
value: 66.781
|
2848 |
+
- type: recall_at_10
|
2849 |
+
value: 90.253
|
2850 |
+
- type: recall_at_100
|
2851 |
+
value: 98.52499999999999
|
2852 |
+
- type: recall_at_1000
|
2853 |
+
value: 100.0
|
2854 |
+
- type: recall_at_3
|
2855 |
+
value: 80.05799999999999
|
2856 |
+
- type: recall_at_5
|
2857 |
+
value: 84.615
|
2858 |
+
- task:
|
2859 |
+
type: Retrieval
|
2860 |
+
dataset:
|
2861 |
+
type: C-MTEB/DuRetrieval
|
2862 |
+
name: MTEB DuRetrieval
|
2863 |
+
config: default
|
2864 |
+
split: dev
|
2865 |
+
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
2866 |
+
metrics:
|
2867 |
+
- type: map_at_1
|
2868 |
+
value: 24.528
|
2869 |
+
- type: map_at_10
|
2870 |
+
value: 76.304
|
2871 |
+
- type: map_at_100
|
2872 |
+
value: 79.327
|
2873 |
+
- type: map_at_1000
|
2874 |
+
value: 79.373
|
2875 |
+
- type: map_at_3
|
2876 |
+
value: 52.035
|
2877 |
+
- type: map_at_5
|
2878 |
+
value: 66.074
|
2879 |
+
- type: mrr_at_1
|
2880 |
+
value: 86.05000000000001
|
2881 |
+
- type: mrr_at_10
|
2882 |
+
value: 90.74
|
2883 |
+
- type: mrr_at_100
|
2884 |
+
value: 90.809
|
2885 |
+
- type: mrr_at_1000
|
2886 |
+
value: 90.81099999999999
|
2887 |
+
- type: mrr_at_3
|
2888 |
+
value: 90.30799999999999
|
2889 |
+
- type: mrr_at_5
|
2890 |
+
value: 90.601
|
2891 |
+
- type: ndcg_at_1
|
2892 |
+
value: 86.05000000000001
|
2893 |
+
- type: ndcg_at_10
|
2894 |
+
value: 84.518
|
2895 |
+
- type: ndcg_at_100
|
2896 |
+
value: 87.779
|
2897 |
+
- type: ndcg_at_1000
|
2898 |
+
value: 88.184
|
2899 |
+
- type: ndcg_at_3
|
2900 |
+
value: 82.339
|
2901 |
+
- type: ndcg_at_5
|
2902 |
+
value: 81.613
|
2903 |
+
- type: precision_at_1
|
2904 |
+
value: 86.05000000000001
|
2905 |
+
- type: precision_at_10
|
2906 |
+
value: 40.945
|
2907 |
+
- type: precision_at_100
|
2908 |
+
value: 4.787
|
2909 |
+
- type: precision_at_1000
|
2910 |
+
value: 0.48900000000000005
|
2911 |
+
- type: precision_at_3
|
2912 |
+
value: 74.117
|
2913 |
+
- type: precision_at_5
|
2914 |
+
value: 62.86000000000001
|
2915 |
+
- type: recall_at_1
|
2916 |
+
value: 24.528
|
2917 |
+
- type: recall_at_10
|
2918 |
+
value: 86.78
|
2919 |
+
- type: recall_at_100
|
2920 |
+
value: 97.198
|
2921 |
+
- type: recall_at_1000
|
2922 |
+
value: 99.227
|
2923 |
+
- type: recall_at_3
|
2924 |
+
value: 54.94799999999999
|
2925 |
+
- type: recall_at_5
|
2926 |
+
value: 72.053
|
2927 |
+
- task:
|
2928 |
+
type: Retrieval
|
2929 |
+
dataset:
|
2930 |
+
type: C-MTEB/EcomRetrieval
|
2931 |
+
name: MTEB EcomRetrieval
|
2932 |
+
config: default
|
2933 |
+
split: dev
|
2934 |
+
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
2935 |
+
metrics:
|
2936 |
+
- type: map_at_1
|
2937 |
+
value: 52.1
|
2938 |
+
- type: map_at_10
|
2939 |
+
value: 62.502
|
2940 |
+
- type: map_at_100
|
2941 |
+
value: 63.026
|
2942 |
+
- type: map_at_1000
|
2943 |
+
value: 63.04
|
2944 |
+
- type: map_at_3
|
2945 |
+
value: 59.782999999999994
|
2946 |
+
- type: map_at_5
|
2947 |
+
value: 61.443000000000005
|
2948 |
+
- type: mrr_at_1
|
2949 |
+
value: 52.1
|
2950 |
+
- type: mrr_at_10
|
2951 |
+
value: 62.502
|
2952 |
+
- type: mrr_at_100
|
2953 |
+
value: 63.026
|
2954 |
+
- type: mrr_at_1000
|
2955 |
+
value: 63.04
|
2956 |
+
- type: mrr_at_3
|
2957 |
+
value: 59.782999999999994
|
2958 |
+
- type: mrr_at_5
|
2959 |
+
value: 61.443000000000005
|
2960 |
+
- type: ndcg_at_1
|
2961 |
+
value: 52.1
|
2962 |
+
- type: ndcg_at_10
|
2963 |
+
value: 67.75999999999999
|
2964 |
+
- type: ndcg_at_100
|
2965 |
+
value: 70.072
|
2966 |
+
- type: ndcg_at_1000
|
2967 |
+
value: 70.441
|
2968 |
+
- type: ndcg_at_3
|
2969 |
+
value: 62.28
|
2970 |
+
- type: ndcg_at_5
|
2971 |
+
value: 65.25800000000001
|
2972 |
+
- type: precision_at_1
|
2973 |
+
value: 52.1
|
2974 |
+
- type: precision_at_10
|
2975 |
+
value: 8.43
|
2976 |
+
- type: precision_at_100
|
2977 |
+
value: 0.946
|
2978 |
+
- type: precision_at_1000
|
2979 |
+
value: 0.098
|
2980 |
+
- type: precision_at_3
|
2981 |
+
value: 23.166999999999998
|
2982 |
+
- type: precision_at_5
|
2983 |
+
value: 15.340000000000002
|
2984 |
+
- type: recall_at_1
|
2985 |
+
value: 52.1
|
2986 |
+
- type: recall_at_10
|
2987 |
+
value: 84.3
|
2988 |
+
- type: recall_at_100
|
2989 |
+
value: 94.6
|
2990 |
+
- type: recall_at_1000
|
2991 |
+
value: 97.5
|
2992 |
+
- type: recall_at_3
|
2993 |
+
value: 69.5
|
2994 |
+
- type: recall_at_5
|
2995 |
+
value: 76.7
|
2996 |
+
- task:
|
2997 |
+
type: Classification
|
2998 |
+
dataset:
|
2999 |
+
type: C-MTEB/IFlyTek-classification
|
3000 |
+
name: MTEB IFlyTek
|
3001 |
+
config: default
|
3002 |
+
split: validation
|
3003 |
+
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
3004 |
+
metrics:
|
3005 |
+
- type: accuracy
|
3006 |
+
value: 52.04309349749903
|
3007 |
+
- type: f1
|
3008 |
+
value: 39.91893257315586
|
3009 |
+
- task:
|
3010 |
+
type: Classification
|
3011 |
+
dataset:
|
3012 |
+
type: C-MTEB/JDReview-classification
|
3013 |
+
name: MTEB JDReview
|
3014 |
+
config: default
|
3015 |
+
split: test
|
3016 |
+
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
|
3017 |
+
metrics:
|
3018 |
+
- type: accuracy
|
3019 |
+
value: 85.60975609756099
|
3020 |
+
- type: ap
|
3021 |
+
value: 54.30148799475452
|
3022 |
+
- type: f1
|
3023 |
+
value: 80.55899583002706
|
3024 |
+
- task:
|
3025 |
+
type: STS
|
3026 |
+
dataset:
|
3027 |
+
type: C-MTEB/LCQMC
|
3028 |
+
name: MTEB LCQMC
|
3029 |
+
config: default
|
3030 |
+
split: test
|
3031 |
+
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
3032 |
+
metrics:
|
3033 |
+
- type: cos_sim_pearson
|
3034 |
+
value: 66.80471387011771
|
3035 |
+
- type: cos_sim_spearman
|
3036 |
+
value: 72.69179486905233
|
3037 |
+
- type: euclidean_pearson
|
3038 |
+
value: 71.32341962627513
|
3039 |
+
- type: euclidean_spearman
|
3040 |
+
value: 72.69179043377405
|
3041 |
+
- type: manhattan_pearson
|
3042 |
+
value: 71.06180379791572
|
3043 |
+
- type: manhattan_spearman
|
3044 |
+
value: 72.400125270369
|
3045 |
+
- task:
|
3046 |
+
type: Reranking
|
3047 |
+
dataset:
|
3048 |
+
type: C-MTEB/Mmarco-reranking
|
3049 |
+
name: MTEB MMarcoReranking
|
3050 |
+
config: default
|
3051 |
+
split: dev
|
3052 |
+
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
3053 |
+
metrics:
|
3054 |
+
- type: map
|
3055 |
+
value: 27.9616280919871
|
3056 |
+
- type: mrr
|
3057 |
+
value: 26.544047619047618
|
3058 |
+
- task:
|
3059 |
+
type: Retrieval
|
3060 |
+
dataset:
|
3061 |
+
type: C-MTEB/MMarcoRetrieval
|
3062 |
+
name: MTEB MMarcoRetrieval
|
3063 |
+
config: default
|
3064 |
+
split: dev
|
3065 |
+
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
3066 |
+
metrics:
|
3067 |
+
- type: map_at_1
|
3068 |
+
value: 68.32300000000001
|
3069 |
+
- type: map_at_10
|
3070 |
+
value: 77.187
|
3071 |
+
- type: map_at_100
|
3072 |
+
value: 77.496
|
3073 |
+
- type: map_at_1000
|
3074 |
+
value: 77.503
|
3075 |
+
- type: map_at_3
|
3076 |
+
value: 75.405
|
3077 |
+
- type: map_at_5
|
3078 |
+
value: 76.539
|
3079 |
+
- type: mrr_at_1
|
3080 |
+
value: 70.616
|
3081 |
+
- type: mrr_at_10
|
3082 |
+
value: 77.703
|
3083 |
+
- type: mrr_at_100
|
3084 |
+
value: 77.97699999999999
|
3085 |
+
- type: mrr_at_1000
|
3086 |
+
value: 77.984
|
3087 |
+
- type: mrr_at_3
|
3088 |
+
value: 76.139
|
3089 |
+
- type: mrr_at_5
|
3090 |
+
value: 77.125
|
3091 |
+
- type: ndcg_at_1
|
3092 |
+
value: 70.616
|
3093 |
+
- type: ndcg_at_10
|
3094 |
+
value: 80.741
|
3095 |
+
- type: ndcg_at_100
|
3096 |
+
value: 82.123
|
3097 |
+
- type: ndcg_at_1000
|
3098 |
+
value: 82.32300000000001
|
3099 |
+
- type: ndcg_at_3
|
3100 |
+
value: 77.35600000000001
|
3101 |
+
- type: ndcg_at_5
|
3102 |
+
value: 79.274
|
3103 |
+
- type: precision_at_1
|
3104 |
+
value: 70.616
|
3105 |
+
- type: precision_at_10
|
3106 |
+
value: 9.696
|
3107 |
+
- type: precision_at_100
|
3108 |
+
value: 1.038
|
3109 |
+
- type: precision_at_1000
|
3110 |
+
value: 0.106
|
3111 |
+
- type: precision_at_3
|
3112 |
+
value: 29.026000000000003
|
3113 |
+
- type: precision_at_5
|
3114 |
+
value: 18.433
|
3115 |
+
- type: recall_at_1
|
3116 |
+
value: 68.32300000000001
|
3117 |
+
- type: recall_at_10
|
3118 |
+
value: 91.186
|
3119 |
+
- type: recall_at_100
|
3120 |
+
value: 97.439
|
3121 |
+
- type: recall_at_1000
|
3122 |
+
value: 99.004
|
3123 |
+
- type: recall_at_3
|
3124 |
+
value: 82.218
|
3125 |
+
- type: recall_at_5
|
3126 |
+
value: 86.797
|
3127 |
+
- task:
|
3128 |
+
type: Classification
|
3129 |
+
dataset:
|
3130 |
+
type: mteb/amazon_massive_intent
|
3131 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
3132 |
+
config: zh-CN
|
3133 |
+
split: test
|
3134 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
3135 |
+
metrics:
|
3136 |
+
- type: accuracy
|
3137 |
+
value: 74.78143913920646
|
3138 |
+
- type: f1
|
3139 |
+
value: 72.6141122227626
|
3140 |
+
- task:
|
3141 |
+
type: Classification
|
3142 |
+
dataset:
|
3143 |
+
type: mteb/amazon_massive_scenario
|
3144 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
3145 |
+
config: zh-CN
|
3146 |
+
split: test
|
3147 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
3148 |
+
metrics:
|
3149 |
+
- type: accuracy
|
3150 |
+
value: 76.98722259583053
|
3151 |
+
- type: f1
|
3152 |
+
value: 76.5974920207624
|
3153 |
+
- task:
|
3154 |
+
type: Retrieval
|
3155 |
+
dataset:
|
3156 |
+
type: C-MTEB/MedicalRetrieval
|
3157 |
+
name: MTEB MedicalRetrieval
|
3158 |
+
config: default
|
3159 |
+
split: dev
|
3160 |
+
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
3161 |
+
metrics:
|
3162 |
+
- type: map_at_1
|
3163 |
+
value: 51.800000000000004
|
3164 |
+
- type: map_at_10
|
3165 |
+
value: 57.938
|
3166 |
+
- type: map_at_100
|
3167 |
+
value: 58.494
|
3168 |
+
- type: map_at_1000
|
3169 |
+
value: 58.541
|
3170 |
+
- type: map_at_3
|
3171 |
+
value: 56.617
|
3172 |
+
- type: map_at_5
|
3173 |
+
value: 57.302
|
3174 |
+
- type: mrr_at_1
|
3175 |
+
value: 51.800000000000004
|
3176 |
+
- type: mrr_at_10
|
3177 |
+
value: 57.938
|
3178 |
+
- type: mrr_at_100
|
3179 |
+
value: 58.494
|
3180 |
+
- type: mrr_at_1000
|
3181 |
+
value: 58.541
|
3182 |
+
- type: mrr_at_3
|
3183 |
+
value: 56.617
|
3184 |
+
- type: mrr_at_5
|
3185 |
+
value: 57.302
|
3186 |
+
- type: ndcg_at_1
|
3187 |
+
value: 51.800000000000004
|
3188 |
+
- type: ndcg_at_10
|
3189 |
+
value: 60.891
|
3190 |
+
- type: ndcg_at_100
|
3191 |
+
value: 63.897000000000006
|
3192 |
+
- type: ndcg_at_1000
|
3193 |
+
value: 65.231
|
3194 |
+
- type: ndcg_at_3
|
3195 |
+
value: 58.108000000000004
|
3196 |
+
- type: ndcg_at_5
|
3197 |
+
value: 59.343
|
3198 |
+
- type: precision_at_1
|
3199 |
+
value: 51.800000000000004
|
3200 |
+
- type: precision_at_10
|
3201 |
+
value: 7.02
|
3202 |
+
- type: precision_at_100
|
3203 |
+
value: 0.8500000000000001
|
3204 |
+
- type: precision_at_1000
|
3205 |
+
value: 0.096
|
3206 |
+
- type: precision_at_3
|
3207 |
+
value: 20.8
|
3208 |
+
- type: precision_at_5
|
3209 |
+
value: 13.08
|
3210 |
+
- type: recall_at_1
|
3211 |
+
value: 51.800000000000004
|
3212 |
+
- type: recall_at_10
|
3213 |
+
value: 70.19999999999999
|
3214 |
+
- type: recall_at_100
|
3215 |
+
value: 85.0
|
3216 |
+
- type: recall_at_1000
|
3217 |
+
value: 95.7
|
3218 |
+
- type: recall_at_3
|
3219 |
+
value: 62.4
|
3220 |
+
- type: recall_at_5
|
3221 |
+
value: 65.4
|
3222 |
+
- task:
|
3223 |
+
type: Classification
|
3224 |
+
dataset:
|
3225 |
+
type: C-MTEB/MultilingualSentiment-classification
|
3226 |
+
name: MTEB MultilingualSentiment
|
3227 |
+
config: default
|
3228 |
+
split: validation
|
3229 |
+
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
3230 |
+
metrics:
|
3231 |
+
- type: accuracy
|
3232 |
+
value: 80.39333333333335
|
3233 |
+
- type: f1
|
3234 |
+
value: 80.42683132366277
|
3235 |
+
- task:
|
3236 |
+
type: PairClassification
|
3237 |
+
dataset:
|
3238 |
+
type: C-MTEB/OCNLI
|
3239 |
+
name: MTEB Ocnli
|
3240 |
+
config: default
|
3241 |
+
split: validation
|
3242 |
+
revision: 66e76a618a34d6d565d5538088562851e6daa7ec
|
3243 |
+
metrics:
|
3244 |
+
- type: cos_sim_accuracy
|
3245 |
+
value: 70.7634001082837
|
3246 |
+
- type: cos_sim_ap
|
3247 |
+
value: 74.97527385556558
|
3248 |
+
- type: cos_sim_f1
|
3249 |
+
value: 72.77277277277277
|
3250 |
+
- type: cos_sim_precision
|
3251 |
+
value: 69.17221693625119
|
3252 |
+
- type: cos_sim_recall
|
3253 |
+
value: 76.76874340021119
|
3254 |
+
- type: dot_accuracy
|
3255 |
+
value: 70.7634001082837
|
3256 |
+
- type: dot_ap
|
3257 |
+
value: 74.97527385556558
|
3258 |
+
- type: dot_f1
|
3259 |
+
value: 72.77277277277277
|
3260 |
+
- type: dot_precision
|
3261 |
+
value: 69.17221693625119
|
3262 |
+
- type: dot_recall
|
3263 |
+
value: 76.76874340021119
|
3264 |
+
- type: euclidean_accuracy
|
3265 |
+
value: 70.7634001082837
|
3266 |
+
- type: euclidean_ap
|
3267 |
+
value: 74.97527385556558
|
3268 |
+
- type: euclidean_f1
|
3269 |
+
value: 72.77277277277277
|
3270 |
+
- type: euclidean_precision
|
3271 |
+
value: 69.17221693625119
|
3272 |
+
- type: euclidean_recall
|
3273 |
+
value: 76.76874340021119
|
3274 |
+
- type: manhattan_accuracy
|
3275 |
+
value: 69.89713048186248
|
3276 |
+
- type: manhattan_ap
|
3277 |
+
value: 74.25943370061067
|
3278 |
+
- type: manhattan_f1
|
3279 |
+
value: 72.17268887846082
|
3280 |
+
- type: manhattan_precision
|
3281 |
+
value: 64.94932432432432
|
3282 |
+
- type: manhattan_recall
|
3283 |
+
value: 81.20380147835269
|
3284 |
+
- type: max_accuracy
|
3285 |
+
value: 70.7634001082837
|
3286 |
+
- type: max_ap
|
3287 |
+
value: 74.97527385556558
|
3288 |
+
- type: max_f1
|
3289 |
+
value: 72.77277277277277
|
3290 |
+
- task:
|
3291 |
+
type: Classification
|
3292 |
+
dataset:
|
3293 |
+
type: C-MTEB/OnlineShopping-classification
|
3294 |
+
name: MTEB OnlineShopping
|
3295 |
+
config: default
|
3296 |
+
split: test
|
3297 |
+
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
3298 |
+
metrics:
|
3299 |
+
- type: accuracy
|
3300 |
+
value: 92.92000000000002
|
3301 |
+
- type: ap
|
3302 |
+
value: 91.98475625106201
|
3303 |
+
- type: f1
|
3304 |
+
value: 92.91841470541901
|
3305 |
+
- task:
|
3306 |
+
type: STS
|
3307 |
+
dataset:
|
3308 |
+
type: C-MTEB/PAWSX
|
3309 |
+
name: MTEB PAWSX
|
3310 |
+
config: default
|
3311 |
+
split: test
|
3312 |
+
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
3313 |
+
metrics:
|
3314 |
+
- type: cos_sim_pearson
|
3315 |
+
value: 14.383440096352668
|
3316 |
+
- type: cos_sim_spearman
|
3317 |
+
value: 16.306924065606417
|
3318 |
+
- type: euclidean_pearson
|
3319 |
+
value: 18.41761420026285
|
3320 |
+
- type: euclidean_spearman
|
3321 |
+
value: 16.306657048204574
|
3322 |
+
- type: manhattan_pearson
|
3323 |
+
value: 18.4377010794545
|
3324 |
+
- type: manhattan_spearman
|
3325 |
+
value: 16.36919038809279
|
3326 |
+
- task:
|
3327 |
+
type: STS
|
3328 |
+
dataset:
|
3329 |
+
type: C-MTEB/QBQTC
|
3330 |
+
name: MTEB QBQTC
|
3331 |
+
config: default
|
3332 |
+
split: test
|
3333 |
+
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
3334 |
+
metrics:
|
3335 |
+
- type: cos_sim_pearson
|
3336 |
+
value: 31.95106420311818
|
3337 |
+
- type: cos_sim_spearman
|
3338 |
+
value: 34.89277148116508
|
3339 |
+
- type: euclidean_pearson
|
3340 |
+
value: 32.94933182954164
|
3341 |
+
- type: euclidean_spearman
|
3342 |
+
value: 34.89280064539983
|
3343 |
+
- type: manhattan_pearson
|
3344 |
+
value: 32.86089069741366
|
3345 |
+
- type: manhattan_spearman
|
3346 |
+
value: 34.7932921716507
|
3347 |
+
- task:
|
3348 |
+
type: STS
|
3349 |
+
dataset:
|
3350 |
+
type: mteb/sts22-crosslingual-sts
|
3351 |
+
name: MTEB STS22 (zh)
|
3352 |
+
config: zh
|
3353 |
+
split: test
|
3354 |
+
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
3355 |
+
metrics:
|
3356 |
+
- type: cos_sim_pearson
|
3357 |
+
value: 67.41628669863584
|
3358 |
+
- type: cos_sim_spearman
|
3359 |
+
value: 67.87238206703478
|
3360 |
+
- type: euclidean_pearson
|
3361 |
+
value: 67.67834985311778
|
3362 |
+
- type: euclidean_spearman
|
3363 |
+
value: 67.87238206703478
|
3364 |
+
- type: manhattan_pearson
|
3365 |
+
value: 68.23423896742973
|
3366 |
+
- type: manhattan_spearman
|
3367 |
+
value: 68.27069260687092
|
3368 |
+
- task:
|
3369 |
+
type: STS
|
3370 |
+
dataset:
|
3371 |
+
type: C-MTEB/STSB
|
3372 |
+
name: MTEB STSB
|
3373 |
+
config: default
|
3374 |
+
split: test
|
3375 |
+
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
3376 |
+
metrics:
|
3377 |
+
- type: cos_sim_pearson
|
3378 |
+
value: 77.31628954400037
|
3379 |
+
- type: cos_sim_spearman
|
3380 |
+
value: 76.83296022489624
|
3381 |
+
- type: euclidean_pearson
|
3382 |
+
value: 76.69680425261211
|
3383 |
+
- type: euclidean_spearman
|
3384 |
+
value: 76.83287843321102
|
3385 |
+
- type: manhattan_pearson
|
3386 |
+
value: 76.65603163327958
|
3387 |
+
- type: manhattan_spearman
|
3388 |
+
value: 76.80803503360451
|
3389 |
+
- task:
|
3390 |
+
type: Reranking
|
3391 |
+
dataset:
|
3392 |
+
type: C-MTEB/T2Reranking
|
3393 |
+
name: MTEB T2Reranking
|
3394 |
+
config: default
|
3395 |
+
split: dev
|
3396 |
+
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
3397 |
+
metrics:
|
3398 |
+
- type: map
|
3399 |
+
value: 66.73038448968596
|
3400 |
+
- type: mrr
|
3401 |
+
value: 77.26510193334836
|
3402 |
+
- task:
|
3403 |
+
type: Retrieval
|
3404 |
+
dataset:
|
3405 |
+
type: C-MTEB/T2Retrieval
|
3406 |
+
name: MTEB T2Retrieval
|
3407 |
+
config: default
|
3408 |
+
split: dev
|
3409 |
+
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
3410 |
+
metrics:
|
3411 |
+
- type: map_at_1
|
3412 |
+
value: 28.157
|
3413 |
+
- type: map_at_10
|
3414 |
+
value: 79.00399999999999
|
3415 |
+
- type: map_at_100
|
3416 |
+
value: 82.51899999999999
|
3417 |
+
- type: map_at_1000
|
3418 |
+
value: 82.577
|
3419 |
+
- type: map_at_3
|
3420 |
+
value: 55.614
|
3421 |
+
- type: map_at_5
|
3422 |
+
value: 68.292
|
3423 |
+
- type: mrr_at_1
|
3424 |
+
value: 91.167
|
3425 |
+
- type: mrr_at_10
|
3426 |
+
value: 93.391
|
3427 |
+
- type: mrr_at_100
|
3428 |
+
value: 93.467
|
3429 |
+
- type: mrr_at_1000
|
3430 |
+
value: 93.47
|
3431 |
+
- type: mrr_at_3
|
3432 |
+
value: 93.001
|
3433 |
+
- type: mrr_at_5
|
3434 |
+
value: 93.254
|
3435 |
+
- type: ndcg_at_1
|
3436 |
+
value: 91.167
|
3437 |
+
- type: ndcg_at_10
|
3438 |
+
value: 86.155
|
3439 |
+
- type: ndcg_at_100
|
3440 |
+
value: 89.425
|
3441 |
+
- type: ndcg_at_1000
|
3442 |
+
value: 89.983
|
3443 |
+
- type: ndcg_at_3
|
3444 |
+
value: 87.516
|
3445 |
+
- type: ndcg_at_5
|
3446 |
+
value: 86.148
|
3447 |
+
- type: precision_at_1
|
3448 |
+
value: 91.167
|
3449 |
+
- type: precision_at_10
|
3450 |
+
value: 42.697
|
3451 |
+
- type: precision_at_100
|
3452 |
+
value: 5.032
|
3453 |
+
- type: precision_at_1000
|
3454 |
+
value: 0.516
|
3455 |
+
- type: precision_at_3
|
3456 |
+
value: 76.45100000000001
|
3457 |
+
- type: precision_at_5
|
3458 |
+
value: 64.051
|
3459 |
+
- type: recall_at_1
|
3460 |
+
value: 28.157
|
3461 |
+
- type: recall_at_10
|
3462 |
+
value: 84.974
|
3463 |
+
- type: recall_at_100
|
3464 |
+
value: 95.759
|
3465 |
+
- type: recall_at_1000
|
3466 |
+
value: 98.583
|
3467 |
+
- type: recall_at_3
|
3468 |
+
value: 57.102
|
3469 |
+
- type: recall_at_5
|
3470 |
+
value: 71.383
|
3471 |
+
- task:
|
3472 |
+
type: Classification
|
3473 |
+
dataset:
|
3474 |
+
type: C-MTEB/TNews-classification
|
3475 |
+
name: MTEB TNews
|
3476 |
+
config: default
|
3477 |
+
split: validation
|
3478 |
+
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
3479 |
+
metrics:
|
3480 |
+
- type: accuracy
|
3481 |
+
value: 55.031
|
3482 |
+
- type: f1
|
3483 |
+
value: 53.07992810732314
|
3484 |
+
- task:
|
3485 |
+
type: Clustering
|
3486 |
+
dataset:
|
3487 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
3488 |
+
name: MTEB ThuNewsClusteringP2P
|
3489 |
+
config: default
|
3490 |
+
split: test
|
3491 |
+
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
3492 |
+
metrics:
|
3493 |
+
- type: v_measure
|
3494 |
+
value: 72.80915114296552
|
3495 |
+
- task:
|
3496 |
+
type: Clustering
|
3497 |
+
dataset:
|
3498 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
3499 |
+
name: MTEB ThuNewsClusteringS2S
|
3500 |
+
config: default
|
3501 |
+
split: test
|
3502 |
+
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
3503 |
+
metrics:
|
3504 |
+
- type: v_measure
|
3505 |
+
value: 70.86374654127641
|
3506 |
+
- task:
|
3507 |
+
type: Retrieval
|
3508 |
+
dataset:
|
3509 |
+
type: C-MTEB/VideoRetrieval
|
3510 |
+
name: MTEB VideoRetrieval
|
3511 |
+
config: default
|
3512 |
+
split: dev
|
3513 |
+
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
|
3514 |
+
metrics:
|
3515 |
+
- type: map_at_1
|
3516 |
+
value: 63.6
|
3517 |
+
- type: map_at_10
|
3518 |
+
value: 72.673
|
3519 |
+
- type: map_at_100
|
3520 |
+
value: 73.05199999999999
|
3521 |
+
- type: map_at_1000
|
3522 |
+
value: 73.057
|
3523 |
+
- type: map_at_3
|
3524 |
+
value: 70.833
|
3525 |
+
- type: map_at_5
|
3526 |
+
value: 72.05799999999999
|
3527 |
+
- type: mrr_at_1
|
3528 |
+
value: 63.6
|
3529 |
+
- type: mrr_at_10
|
3530 |
+
value: 72.673
|
3531 |
+
- type: mrr_at_100
|
3532 |
+
value: 73.05199999999999
|
3533 |
+
- type: mrr_at_1000
|
3534 |
+
value: 73.057
|
3535 |
+
- type: mrr_at_3
|
3536 |
+
value: 70.833
|
3537 |
+
- type: mrr_at_5
|
3538 |
+
value: 72.05799999999999
|
3539 |
+
- type: ndcg_at_1
|
3540 |
+
value: 63.6
|
3541 |
+
- type: ndcg_at_10
|
3542 |
+
value: 76.776
|
3543 |
+
- type: ndcg_at_100
|
3544 |
+
value: 78.52900000000001
|
3545 |
+
- type: ndcg_at_1000
|
3546 |
+
value: 78.696
|
3547 |
+
- type: ndcg_at_3
|
3548 |
+
value: 73.093
|
3549 |
+
- type: ndcg_at_5
|
3550 |
+
value: 75.288
|
3551 |
+
- type: precision_at_1
|
3552 |
+
value: 63.6
|
3553 |
+
- type: precision_at_10
|
3554 |
+
value: 8.95
|
3555 |
+
- type: precision_at_100
|
3556 |
+
value: 0.975
|
3557 |
+
- type: precision_at_1000
|
3558 |
+
value: 0.099
|
3559 |
+
- type: precision_at_3
|
3560 |
+
value: 26.533
|
3561 |
+
- type: precision_at_5
|
3562 |
+
value: 16.98
|
3563 |
+
- type: recall_at_1
|
3564 |
+
value: 63.6
|
3565 |
+
- type: recall_at_10
|
3566 |
+
value: 89.5
|
3567 |
+
- type: recall_at_100
|
3568 |
+
value: 97.5
|
3569 |
+
- type: recall_at_1000
|
3570 |
+
value: 98.9
|
3571 |
+
- type: recall_at_3
|
3572 |
+
value: 79.60000000000001
|
3573 |
+
- type: recall_at_5
|
3574 |
+
value: 84.89999999999999
|
3575 |
+
- task:
|
3576 |
+
type: Classification
|
3577 |
+
dataset:
|
3578 |
+
type: C-MTEB/waimai-classification
|
3579 |
+
name: MTEB Waimai
|
3580 |
+
config: default
|
3581 |
+
split: test
|
3582 |
+
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
3583 |
+
metrics:
|
3584 |
+
- type: accuracy
|
3585 |
+
value: 89.39999999999999
|
3586 |
+
- type: ap
|
3587 |
+
value: 75.52087544076016
|
3588 |
+
- type: f1
|
3589 |
+
value: 87.7629629899278
|
3590 |
+
---
|
3591 |
+
|
3592 |
+
<p align="center"><b>GME: General Multimodal Embeddings</b></p>
|
3593 |
+
|
3594 |
+
## GME-Qwen2VL-7B
|
3595 |
+
|
3596 |
+
We are excited to present `GME-Qwen2VL` models, our first generation **multimodal embedding models** for text and images,
|
3597 |
+
which are based on advanced [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) multimodal large language models (MLLMs).
|
3598 |
+
|
3599 |
+
The `GME-Qwen2VL` models support three input forms: **text**, **image**, and **image-text pair**, all of which can produce universal vector representations and have powerful retrieval performance.
|
3600 |
+
|
3601 |
+
- **High Performance**: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (**UMRB**) and strong **MTEB** evaluation scores.
|
3602 |
+
- **Dynamic Image Resolution**: Benefiting from `Qwen2-VL` and our training data, GME models support dynamic resolution image input.
|
3603 |
+
Our models are able to perform leadingly in the **visual document retrieval** task which requires fine-grained understanding of document screenshots.
|
3604 |
+
You can control to balance performance and efficiency.
|
3605 |
+
|
3606 |
+
**Developed by**: Tongyi Lab, Alibaba Group
|
3607 |
+
|
3608 |
+
**Paper**: GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
|
3609 |
+
|
3610 |
+
|
3611 |
+
## Model List
|
3612 |
+
| Models | Model Size | Max Seq. Length | Dimension | MTEB-en| UMRB |
|
3613 |
+
|:-----: | :-----: |:-----: |:-----: |:-----: | :-----: |
|
3614 |
+
|[`gme-Qwen2VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | - | 64.45 |
|
3615 |
+
|[`gme-Qwen2VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | - | 67.02 |
|
3616 |
+
|
3617 |
+
## Usage
|
3618 |
+
|
3619 |
+
**Use with custom code**
|
3620 |
+
|
3621 |
+
```python
|
3622 |
+
# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2VL-2B/blob/main/scripts/gme_inference.py
|
3623 |
+
from gme_inference import GmeQwen2VL
|
3624 |
+
|
3625 |
+
texts = [
|
3626 |
+
"What kind of car is this?",
|
3627 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
|
3628 |
+
]
|
3629 |
+
images = [
|
3630 |
+
'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
|
3631 |
+
'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
|
3632 |
+
]
|
3633 |
+
|
3634 |
+
gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
|
3635 |
+
|
3636 |
+
# Single-modal embedding
|
3637 |
+
e_text = gme.get_text_embeddings(texts=texts)
|
3638 |
+
e_image = gme.get_image_embeddings(images=images)
|
3639 |
+
print((e_text * e_image).sum(-1))
|
3640 |
+
## tensor([0.2281, 0.6001], dtype=torch.float16)
|
3641 |
+
|
3642 |
+
# How to set embedding instruction
|
3643 |
+
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
|
3644 |
+
# If is_query=False, we always use the default instruction.
|
3645 |
+
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
3646 |
+
print((e_query * e_corpus).sum(-1))
|
3647 |
+
## tensor([0.2433, 0.7051], dtype=torch.float16)
|
3648 |
+
|
3649 |
+
# Fused-modal embedding
|
3650 |
+
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
3651 |
+
print((e_fused[0] * e_fused[1]).sum())
|
3652 |
+
## tensor(0.6108, dtype=torch.float16)
|
3653 |
+
|
3654 |
+
```
|
3655 |
+
|
3656 |
+
## Evaluation
|
3657 |
+
|
3658 |
+
We validated the performance on our universal multimodal retrieval benchmark (**UMRB**) among others.
|
3659 |
+
|
3660 |
+
| | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. |
|
3661 |
+
|--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:|
|
3662 |
+
| | | T→T (16) | I→I (1) | T→I (4) | T→VD (10) | I→T (4) | T→IT (2) | IT→T (5) | IT→I (2) | IT→IT (3) | (47) |
|
3663 |
+
| VISTA | 0.2B | 55.15 | **31.98** | 32.88 | 10.12 | 31.23 | 45.81 | 53.32 | 8.97 | 26.26 | 36.74 |
|
3664 |
+
| CLIP-SF | 0.4B | 39.75 | 31.42 | 59.05 | 24.09 | 62.95 | 66.41 | 53.32 | 34.9 | 55.65 | 43.24 |
|
3665 |
+
| One-Peace | 4B | 43.54 | 31.27 | 61.38 | 42.9 | 65.59 | 42.72 | 28.29 | 6.73 | 23.41 | 42.03 |
|
3666 |
+
| DSE | 4.2B | 48.94 | 27.92 | 40.75 | 78.21 | 52.54 | 49.62 | 35.44 | 8.36 | 40.18 | 50.63 |
|
3667 |
+
| E5-V | 8.4B | 52.41 | 27.36 | 46.56 | 41.22 | 47.95 | 54.13 | 32.9 | 23.17 | 7.23 | 42.48 |
|
3668 |
+
| **GME-Qwen2VL-2B** | 2.2B | 55.93 | 29.86 | 57.36 | 87.84 | **61.93** | 76.47 | 64.58 | 37.02 | 66.47 | 64.45 |
|
3669 |
+
| **GME-Qwen2VL-7B** | 8.3B | **58.19** | 31.89 | **61.35** | **89.92** | 60.83 | **80.94** | **66.18** | **42.56** | **73.62** | **67.02** |
|
3670 |
+
|
3671 |
+
The [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) English tab shows the text embeddings performence of our model.
|
3672 |
+
|
3673 |
+
**More detailed experimental results can be found in the [paper](https://arxiv.org/pdf/2407.19669)**.
|
3674 |
+
|
3675 |
+
|
3676 |
+
## Limitations
|
3677 |
+
|
3678 |
+
- **Single Image Input**: In `Qwen2-VL`, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency.
|
3679 |
+
Due to the lack of relevant data, our models and evaluations retain one single image.
|
3680 |
+
- **English-only Training**: Our models are trained on english data only. Although the `Qwen2-VL` models are multilingual, the multilingual-multimodal embedding performance are not guaranteed.
|
3681 |
+
|
3682 |
+
We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version.
|
3683 |
+
|
3684 |
+
|
3685 |
+
## Redistribution and Use
|
3686 |
+
|
3687 |
+
We welcome and appreciate various applications of GME models and further improvements to the GME models themselves.
|
3688 |
+
Following Llama license,
|
3689 |
+
1. if you distribute or make available the GME models (or any derivative works thereof),
|
3690 |
+
or a product or service (including another AI model) that contains any of them,
|
3691 |
+
you shall prominently display “Built with GME” on a related website, user interface, blogpost, about page, or product documentation;
|
3692 |
+
2. if you use the GME models or any outputs or results of them to create, train, fine tune, or otherwise improve an AI model,
|
3693 |
+
which is distributed or made available, you shall also include “GME” at the beginning of any such AI model name.
|
3694 |
+
|
3695 |
+
|
3696 |
+
|
3697 |
+
## Citation
|
3698 |
+
If you find our paper or models helpful, please consider cite:
|
3699 |
+
|
3700 |
+
```
|
3701 |
+
@misc{zhang2024gme,
|
3702 |
+
title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs},
|
3703 |
+
author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min},
|
3704 |
+
year={2024},
|
3705 |
+
eprint={2412.xxxxx},
|
3706 |
+
archivePrefix={arXiv},
|
3707 |
+
primaryClass={cs.CL},
|
3708 |
+
url={https://arxiv.org/abs/2412.xxxxx},
|
3709 |
+
}
|
3710 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gme-Qwen2-VL-2B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2VLForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"image_token_id": 151655,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 8960,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen2_vl",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 2,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"mrope_section": [
|
23 |
+
16,
|
24 |
+
24,
|
25 |
+
24
|
26 |
+
],
|
27 |
+
"type": "mrope"
|
28 |
+
},
|
29 |
+
"rope_theta": 1000000.0,
|
30 |
+
"sliding_window": 32768,
|
31 |
+
"tie_word_embeddings": true,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.45.0.dev0",
|
34 |
+
"use_cache": true,
|
35 |
+
"use_sliding_window": false,
|
36 |
+
"video_token_id": 151656,
|
37 |
+
"vision_config": {
|
38 |
+
"hidden_size": 1536,
|
39 |
+
"in_chans": 3,
|
40 |
+
"model_type": "qwen2_vl",
|
41 |
+
"spatial_patch_size": 14
|
42 |
+
},
|
43 |
+
"vision_end_token_id": 151653,
|
44 |
+
"vision_start_token_id": 151652,
|
45 |
+
"vision_token_id": 151654,
|
46 |
+
"vocab_size": 151936
|
47 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.1,
|
11 |
+
"top_k": 1,
|
12 |
+
"top_p": 0.001,
|
13 |
+
"transformers_version": "4.45.0.dev0"
|
14 |
+
}
|
gme_inference.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from tqdm.autonotebook import tqdm
|
12 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
13 |
+
|
14 |
+
|
15 |
+
class GmeQwen2VL:
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
19 |
+
model_path: Optional[str] = None,
|
20 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
21 |
+
min_image_tokens=256,
|
22 |
+
max_image_tokens=1280,
|
23 |
+
max_length=1800,
|
24 |
+
**kwargs,
|
25 |
+
) -> None:
|
26 |
+
model_name = model_path or model_name
|
27 |
+
self.base = AutoModelForVision2Seq.from_pretrained(
|
28 |
+
model_name, torch_dtype=torch.float16, **kwargs
|
29 |
+
)
|
30 |
+
self.base.eval()
|
31 |
+
self.normalize = True
|
32 |
+
self.device = device
|
33 |
+
min_pixels = min_image_tokens * 28 * 28
|
34 |
+
max_pixels = max_image_tokens * 28 * 28
|
35 |
+
self.max_length = max_length
|
36 |
+
self.processor = AutoProcessor.from_pretrained(
|
37 |
+
model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
38 |
+
)
|
39 |
+
self.processor.tokenizer.padding_side = 'right'
|
40 |
+
self.defualt_instruction = 'You are a helpful assistant.'
|
41 |
+
self.sep = ' '
|
42 |
+
|
43 |
+
def forward(
|
44 |
+
self,
|
45 |
+
input_ids: Optional[torch.LongTensor] = None,
|
46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
47 |
+
position_ids: Optional[torch.LongTensor] = None,
|
48 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
49 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
50 |
+
pixel_values: Optional[torch.Tensor] = None,
|
51 |
+
# pixel_values_videos: Optional[torch.FloatTensor] = None,
|
52 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
53 |
+
# video_grid_thw: Optional[torch.LongTensor] = None,
|
54 |
+
pooling_mask: Optional[torch.LongTensor] = None,
|
55 |
+
**kwargs
|
56 |
+
) -> torch.Tensor:
|
57 |
+
if inputs_embeds is None:
|
58 |
+
inputs_embeds = self.base.model.embed_tokens(input_ids)
|
59 |
+
if pixel_values is not None:
|
60 |
+
pixel_values = pixel_values.type(self.base.visual.get_dtype())
|
61 |
+
image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
|
62 |
+
image_mask = input_ids == self.base.config.image_token_id
|
63 |
+
inputs_embeds[image_mask] = image_embeds
|
64 |
+
# if pixel_values_videos is not None:
|
65 |
+
# pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
|
66 |
+
# video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
|
67 |
+
# video_mask = input_ids == self.base.config.video_token_id
|
68 |
+
# inputs_embeds[video_mask] = video_embeds
|
69 |
+
if attention_mask is not None:
|
70 |
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
71 |
+
|
72 |
+
outputs = self.base.model(
|
73 |
+
input_ids=None,
|
74 |
+
position_ids=position_ids,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
past_key_values=past_key_values,
|
77 |
+
inputs_embeds=inputs_embeds,
|
78 |
+
)
|
79 |
+
|
80 |
+
pooling_mask = attention_mask if pooling_mask is None else pooling_mask
|
81 |
+
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
82 |
+
if left_padding:
|
83 |
+
embeddings = outputs.last_hidden_state[:, -1]
|
84 |
+
else:
|
85 |
+
sequence_lengths = pooling_mask.sum(dim=1) - 1
|
86 |
+
batch_size = outputs.last_hidden_state.shape[0]
|
87 |
+
embeddings = outputs.last_hidden_state[torch.arange(
|
88 |
+
batch_size, device=outputs.last_hidden_state.device
|
89 |
+
), sequence_lengths]
|
90 |
+
if self.normalize:
|
91 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
92 |
+
return embeddings.contiguous()
|
93 |
+
|
94 |
+
def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
|
95 |
+
self.base.to(self.device)
|
96 |
+
# Inputs must be batched
|
97 |
+
input_texts, input_images = list(), list()
|
98 |
+
for t, i in zip(texts, images):
|
99 |
+
if not is_query or instruction is None:
|
100 |
+
instruction = self.defualt_instruction
|
101 |
+
input_str = ''
|
102 |
+
if i is None:
|
103 |
+
input_images = None # All examples in the same batch are consistent
|
104 |
+
else:
|
105 |
+
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
|
106 |
+
i = fetch_image(i)
|
107 |
+
input_images.append(i)
|
108 |
+
if t is not None:
|
109 |
+
input_str += t
|
110 |
+
msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
111 |
+
input_texts.append(msg)
|
112 |
+
|
113 |
+
inputs = self.processor(
|
114 |
+
text=input_texts,
|
115 |
+
images=input_images,
|
116 |
+
padding=True,
|
117 |
+
truncation=True,
|
118 |
+
max_length=self.max_length,
|
119 |
+
return_tensors='pt'
|
120 |
+
)
|
121 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO
|
122 |
+
with torch.no_grad():
|
123 |
+
embeddings = self.forward(**inputs)
|
124 |
+
return embeddings
|
125 |
+
|
126 |
+
def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
|
127 |
+
return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)
|
128 |
+
|
129 |
+
def encode_queries(self, queries: List[str], **kwargs):
|
130 |
+
embeddings = self.encode(queries, **kwargs)
|
131 |
+
return embeddings
|
132 |
+
|
133 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
|
134 |
+
if type(corpus) is dict:
|
135 |
+
sentences = [
|
136 |
+
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
|
137 |
+
if "title" in corpus
|
138 |
+
else corpus["text"][i].strip()
|
139 |
+
for i in range(len(corpus["text"]))
|
140 |
+
]
|
141 |
+
else:
|
142 |
+
sentences = [
|
143 |
+
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
|
144 |
+
for doc in corpus
|
145 |
+
]
|
146 |
+
embeddings = self.encode(sentences, is_query=False, **kwargs)
|
147 |
+
return embeddings
|
148 |
+
|
149 |
+
def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
|
150 |
+
return self.get_fused_embeddings(images=images, **kwargs)
|
151 |
+
|
152 |
+
def get_text_embeddings(self, texts: list[str], **kwargs):
|
153 |
+
return self.get_fused_embeddings(texts=texts, **kwargs)
|
154 |
+
|
155 |
+
def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
|
156 |
+
if isinstance(images, DataLoader):
|
157 |
+
image_loader = images
|
158 |
+
batch_size = image_loader.batch_size
|
159 |
+
image_loader.dataset.transform = None
|
160 |
+
else:
|
161 |
+
batch_size = kwargs.pop('batch_size', 32)
|
162 |
+
if images is None:
|
163 |
+
image_loader = None
|
164 |
+
else:
|
165 |
+
image_loader = DataLoader(
|
166 |
+
images,
|
167 |
+
batch_size=batch_size,
|
168 |
+
shuffle=False,
|
169 |
+
collate_fn=custom_collate_fn,
|
170 |
+
num_workers=min(math.floor(os.cpu_count() / 2), 8),
|
171 |
+
)
|
172 |
+
|
173 |
+
if texts is None:
|
174 |
+
assert image_loader is not None
|
175 |
+
n_batch = len(image_loader)
|
176 |
+
else:
|
177 |
+
n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
|
178 |
+
image_loader = image_loader or [None] * n_batch
|
179 |
+
|
180 |
+
all_embeddings = list()
|
181 |
+
none_batch = [None] * batch_size
|
182 |
+
show_progress_bar = kwargs.pop('show_progress_bar', True)
|
183 |
+
pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
|
184 |
+
for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
|
185 |
+
text_batch = none_batch if texts is None else texts[n: n+batch_size]
|
186 |
+
img_batch = none_batch if img_batch is None else img_batch
|
187 |
+
embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
|
188 |
+
pbar.update(1)
|
189 |
+
all_embeddings.append(embeddings.cpu())
|
190 |
+
pbar.close()
|
191 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
192 |
+
return all_embeddings
|
193 |
+
|
194 |
+
|
195 |
+
def custom_collate_fn(batch):
|
196 |
+
return batch
|
197 |
+
|
198 |
+
|
199 |
+
### Copied from qwen_vl_utils.vision_process.py
|
200 |
+
import base64
|
201 |
+
from io import BytesIO
|
202 |
+
import requests
|
203 |
+
|
204 |
+
IMAGE_FACTOR = 28
|
205 |
+
MIN_PIXELS = 4 * 28 * 28
|
206 |
+
MAX_PIXELS = 16384 * 28 * 28
|
207 |
+
MAX_RATIO = 200
|
208 |
+
|
209 |
+
|
210 |
+
def round_by_factor(number: int, factor: int) -> int:
|
211 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
212 |
+
return round(number / factor) * factor
|
213 |
+
|
214 |
+
|
215 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
216 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
217 |
+
return math.ceil(number / factor) * factor
|
218 |
+
|
219 |
+
|
220 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
221 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
222 |
+
return math.floor(number / factor) * factor
|
223 |
+
|
224 |
+
|
225 |
+
def smart_resize(
|
226 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
227 |
+
) -> tuple[int, int]:
|
228 |
+
"""
|
229 |
+
Rescales the image so that the following conditions are met:
|
230 |
+
|
231 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
232 |
+
|
233 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
234 |
+
|
235 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
236 |
+
"""
|
237 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
238 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
239 |
+
if h_bar * w_bar > max_pixels:
|
240 |
+
beta = math.sqrt((height * width) / max_pixels)
|
241 |
+
h_bar = floor_by_factor(height / beta, factor)
|
242 |
+
w_bar = floor_by_factor(width / beta, factor)
|
243 |
+
elif h_bar * w_bar < min_pixels:
|
244 |
+
beta = math.sqrt(min_pixels / (height * width))
|
245 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
246 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
247 |
+
|
248 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
249 |
+
logging.warning(
|
250 |
+
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
251 |
+
)
|
252 |
+
if h_bar > w_bar:
|
253 |
+
h_bar = w_bar * MAX_RATIO
|
254 |
+
else:
|
255 |
+
w_bar = h_bar * MAX_RATIO
|
256 |
+
return h_bar, w_bar
|
257 |
+
|
258 |
+
|
259 |
+
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
260 |
+
image_obj = None
|
261 |
+
if isinstance(image, Image.Image):
|
262 |
+
image_obj = image
|
263 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
264 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
265 |
+
elif image.startswith("file://"):
|
266 |
+
image_obj = Image.open(image[7:])
|
267 |
+
elif image.startswith("data:image"):
|
268 |
+
if "base64," in image:
|
269 |
+
_, base64_data = image.split("base64,", 1)
|
270 |
+
data = base64.b64decode(base64_data)
|
271 |
+
image_obj = Image.open(BytesIO(data))
|
272 |
+
else:
|
273 |
+
image_obj = Image.open(image)
|
274 |
+
if image_obj is None:
|
275 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
276 |
+
image = image_obj.convert("RGB")
|
277 |
+
## resize
|
278 |
+
# if "resized_height" in ele and "resized_width" in ele:
|
279 |
+
# resized_height, resized_width = smart_resize(
|
280 |
+
# ele["resized_height"],
|
281 |
+
# ele["resized_width"],
|
282 |
+
# factor=size_factor,
|
283 |
+
# )
|
284 |
+
# else:
|
285 |
+
width, height = image.size
|
286 |
+
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
287 |
+
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
288 |
+
resized_height, resized_width = smart_resize(
|
289 |
+
height,
|
290 |
+
width,
|
291 |
+
factor=size_factor,
|
292 |
+
min_pixels=MIN_PIXELS,
|
293 |
+
max_pixels=MAX_PIXELS,
|
294 |
+
)
|
295 |
+
image = image.resize((resized_width, resized_height))
|
296 |
+
|
297 |
+
return image
|
298 |
+
###
|
299 |
+
|
300 |
+
|
301 |
+
if __name__ == '__main__':
|
302 |
+
texts = [
|
303 |
+
"What kind of car is this?",
|
304 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
|
305 |
+
]
|
306 |
+
images = [
|
307 |
+
'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
|
308 |
+
'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
|
309 |
+
]
|
310 |
+
|
311 |
+
gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
|
312 |
+
|
313 |
+
# Single-modal embedding
|
314 |
+
e_text = gme.get_text_embeddings(texts=texts)
|
315 |
+
e_image = gme.get_image_embeddings(images=images)
|
316 |
+
print((e_text * e_image).sum(-1))
|
317 |
+
## tensor([0.2281, 0.6001], dtype=torch.float16)
|
318 |
+
|
319 |
+
# How to set embedding instruction
|
320 |
+
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
|
321 |
+
# If is_query=False, we always use the default instruction.
|
322 |
+
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
323 |
+
print((e_query * e_corpus).sum(-1))
|
324 |
+
## tensor([0.2433, 0.7051], dtype=torch.float16)
|
325 |
+
|
326 |
+
# Fused-modal embedding
|
327 |
+
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
328 |
+
print((e_fused[0] * e_fused[1]).sum())
|
329 |
+
## tensor(0.6108, dtype=torch.float16)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce525de1d47307ebf63285ce4f2f80ca8ffffd94235b2151585e5714307e4e99
|
3 |
+
size 4046085544
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b42b76064f5d14ee9d0390f9a1f3571fc66eae4f40764f818cb5e9aafc5d6f5
|
3 |
+
size 4063188000
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3f1342fe1dd7df1582be00ebd45557316015050ae2edb841e61150825f16adc
|
3 |
+
size 726747736
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8835942400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
259 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
260 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
261 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
262 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
263 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
264 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
266 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
267 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
269 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
271 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
272 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
273 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
274 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
275 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
276 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
278 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
279 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
281 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
283 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
284 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
285 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
286 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
287 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
288 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
290 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
291 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
293 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
295 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
296 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
297 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
298 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
299 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
300 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
302 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
303 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
305 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
307 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
308 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
309 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
310 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
311 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
312 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
314 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
315 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
317 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
319 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
320 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
321 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
322 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
323 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
324 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
326 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
327 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
329 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
331 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
332 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
333 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
334 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
335 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
336 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
338 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
339 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
341 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
343 |
+
"model.norm.weight": "model-00003-of-00003.safetensors",
|
344 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00003.safetensors",
|
345 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00003.safetensors",
|
346 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
347 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
348 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
349 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
350 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
351 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
352 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00003.safetensors",
|
353 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00003.safetensors",
|
354 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00003.safetensors",
|
355 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00003.safetensors",
|
356 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00003.safetensors",
|
357 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00003.safetensors",
|
358 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
359 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
360 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
361 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
362 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
363 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
364 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00003.safetensors",
|
365 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00003.safetensors",
|
366 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00003.safetensors",
|
367 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00003.safetensors",
|
368 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00003.safetensors",
|
369 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00003.safetensors",
|
370 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
371 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
372 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
373 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
374 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
375 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
376 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00003.safetensors",
|
377 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00003.safetensors",
|
378 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00003.safetensors",
|
379 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00003.safetensors",
|
380 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00003.safetensors",
|
381 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00003.safetensors",
|
382 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
383 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
384 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
385 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
386 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
387 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
388 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00003.safetensors",
|
389 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00003.safetensors",
|
390 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00003.safetensors",
|
391 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00003.safetensors",
|
392 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00003.safetensors",
|
393 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00003.safetensors",
|
394 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
395 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
396 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
397 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
398 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
399 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
400 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00003.safetensors",
|
401 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00003.safetensors",
|
402 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00003.safetensors",
|
403 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00003.safetensors",
|
404 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00003.safetensors",
|
405 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00003.safetensors",
|
406 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
407 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
408 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
409 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
410 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
411 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
412 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00003.safetensors",
|
413 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00003.safetensors",
|
414 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00003.safetensors",
|
415 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00003.safetensors",
|
416 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00003.safetensors",
|
417 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00003.safetensors",
|
418 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
419 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
420 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
421 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
422 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
423 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
424 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00003.safetensors",
|
425 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00003.safetensors",
|
426 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00003.safetensors",
|
427 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00003.safetensors",
|
428 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00003.safetensors",
|
429 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00003.safetensors",
|
430 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
431 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
432 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
433 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
434 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
435 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
436 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00003.safetensors",
|
437 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00003.safetensors",
|
438 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00003.safetensors",
|
439 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00003.safetensors",
|
440 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00003.safetensors",
|
441 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00003.safetensors",
|
442 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
443 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
444 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
445 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
446 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
447 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
448 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00003.safetensors",
|
449 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00003.safetensors",
|
450 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00003.safetensors",
|
451 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00003.safetensors",
|
452 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00003.safetensors",
|
453 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00003.safetensors",
|
454 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
455 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
456 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
457 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
458 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
459 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
460 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00003.safetensors",
|
461 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00003.safetensors",
|
462 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00003.safetensors",
|
463 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00003.safetensors",
|
464 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00003.safetensors",
|
465 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00003.safetensors",
|
466 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
467 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
468 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
469 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
470 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
471 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
472 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00003.safetensors",
|
473 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00003.safetensors",
|
474 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00003.safetensors",
|
475 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00003.safetensors",
|
476 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00003.safetensors",
|
477 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00003.safetensors",
|
478 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
479 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
480 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
481 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
482 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
483 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
484 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00003.safetensors",
|
485 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00003.safetensors",
|
486 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00003.safetensors",
|
487 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00003.safetensors",
|
488 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00003.safetensors",
|
489 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00003.safetensors",
|
490 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
491 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
492 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
493 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
494 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
495 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
496 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00003.safetensors",
|
497 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00003.safetensors",
|
498 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00003.safetensors",
|
499 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00003.safetensors",
|
500 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00003.safetensors",
|
501 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00003.safetensors",
|
502 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
503 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
504 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
505 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
506 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
507 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
508 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00003.safetensors",
|
509 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00003.safetensors",
|
510 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00003.safetensors",
|
511 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00003.safetensors",
|
512 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00003.safetensors",
|
513 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00003.safetensors",
|
514 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
515 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
516 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
517 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
518 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
519 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
520 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00003.safetensors",
|
521 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00003.safetensors",
|
522 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00003.safetensors",
|
523 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00003.safetensors",
|
524 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00003.safetensors",
|
525 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00003.safetensors",
|
526 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
527 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
528 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
529 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
530 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
531 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
532 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00003.safetensors",
|
533 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00003.safetensors",
|
534 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00003.safetensors",
|
535 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00003.safetensors",
|
536 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00003.safetensors",
|
537 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00003.safetensors",
|
538 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
539 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
540 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
541 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
542 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
543 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
544 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00003.safetensors",
|
545 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00003.safetensors",
|
546 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00003.safetensors",
|
547 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00003.safetensors",
|
548 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00003.safetensors",
|
549 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00003.safetensors",
|
550 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
551 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
552 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
553 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
554 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
555 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
556 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00003.safetensors",
|
557 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00003.safetensors",
|
558 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00003.safetensors",
|
559 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00003.safetensors",
|
560 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00003.safetensors",
|
561 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00003.safetensors",
|
562 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
563 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
564 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
565 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
566 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
567 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
568 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00003.safetensors",
|
569 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00003.safetensors",
|
570 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00003.safetensors",
|
571 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00003.safetensors",
|
572 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00003.safetensors",
|
573 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00003.safetensors",
|
574 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
575 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
576 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
577 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
578 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
579 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
580 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00003.safetensors",
|
581 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00003.safetensors",
|
582 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00003.safetensors",
|
583 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00003.safetensors",
|
584 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00003.safetensors",
|
585 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00003.safetensors",
|
586 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
587 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
588 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
589 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
590 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
591 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
592 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00003.safetensors",
|
593 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00003.safetensors",
|
594 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00003.safetensors",
|
595 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00003.safetensors",
|
596 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00003.safetensors",
|
597 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00003.safetensors",
|
598 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
599 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
600 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
601 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
602 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
603 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
604 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00003.safetensors",
|
605 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00003.safetensors",
|
606 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00003.safetensors",
|
607 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00003.safetensors",
|
608 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00003.safetensors",
|
609 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00003.safetensors",
|
610 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
611 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
612 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
613 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
614 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
615 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
616 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00003.safetensors",
|
617 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00003.safetensors",
|
618 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00003.safetensors",
|
619 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00003.safetensors",
|
620 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00003.safetensors",
|
621 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00003.safetensors",
|
622 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
623 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
624 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
625 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
626 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
627 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
628 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00003.safetensors",
|
629 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00003.safetensors",
|
630 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00003.safetensors",
|
631 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00003.safetensors",
|
632 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00003.safetensors",
|
633 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00003.safetensors",
|
634 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
635 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
636 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
637 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
638 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
639 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
640 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00003.safetensors",
|
641 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00003.safetensors",
|
642 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00003.safetensors",
|
643 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00003.safetensors",
|
644 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00003.safetensors",
|
645 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00003.safetensors",
|
646 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
647 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
648 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
649 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
650 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
651 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
652 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00003.safetensors",
|
653 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00003.safetensors",
|
654 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00003.safetensors",
|
655 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00003.safetensors",
|
656 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00003.safetensors",
|
657 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00003.safetensors",
|
658 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
659 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
660 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
661 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
662 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
663 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
664 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00003.safetensors",
|
665 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00003.safetensors",
|
666 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00003.safetensors",
|
667 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00003.safetensors",
|
668 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00003.safetensors",
|
669 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00003.safetensors",
|
670 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
671 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
672 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
673 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
674 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
675 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
676 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00003.safetensors",
|
677 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00003.safetensors",
|
678 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00003.safetensors",
|
679 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00003.safetensors",
|
680 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00003.safetensors",
|
681 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00003.safetensors",
|
682 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
683 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
684 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
685 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
686 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
687 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
688 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00003.safetensors",
|
689 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00003.safetensors",
|
690 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00003.safetensors",
|
691 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00003.safetensors",
|
692 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00003.safetensors",
|
693 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00003.safetensors",
|
694 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
695 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
696 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
697 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
698 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
699 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
700 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00003.safetensors",
|
701 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00003.safetensors",
|
702 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00003.safetensors",
|
703 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00003.safetensors",
|
704 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00003.safetensors",
|
705 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00003.safetensors",
|
706 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
707 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
708 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
709 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
710 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
711 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
712 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00003.safetensors",
|
713 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00003.safetensors",
|
714 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00003.safetensors",
|
715 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00003.safetensors",
|
716 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00003.safetensors",
|
717 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00003.safetensors",
|
718 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
719 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
720 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
721 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
722 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
723 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
724 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00003.safetensors",
|
725 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00003.safetensors",
|
726 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00003.safetensors",
|
727 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00003.safetensors",
|
728 |
+
"visual.merger.ln_q.bias": "model-00001-of-00003.safetensors",
|
729 |
+
"visual.merger.ln_q.weight": "model-00001-of-00003.safetensors",
|
730 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00003.safetensors",
|
731 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00003.safetensors",
|
732 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00003.safetensors",
|
733 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00003.safetensors",
|
734 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00003.safetensors"
|
735 |
+
}
|
736 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"min_pixels": 3136,
|
3 |
+
"max_pixels": 12845056,
|
4 |
+
"patch_size": 14,
|
5 |
+
"temporal_patch_size": 2,
|
6 |
+
"merge_size": 2,
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
18 |
+
"processor_class": "Qwen2VLProcessor"
|
19 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"model_max_length": 32768,
|
138 |
+
"pad_token": "<|endoftext|>",
|
139 |
+
"padding_side": "left",
|
140 |
+
"split_special_tokens": false,
|
141 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
142 |
+
"unk_token": null
|
143 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|