thenlper izhx commited on
Commit
aa986cd
1 Parent(s): cef864e

- Init (00cb9c04bbf5639a1ebcf9c6a18849008e3dbaee)
- Upload files (748be87653a72bcd943b3b67296565b26d71793e)
- Create gme_inference.py (22270be06dd84a446686b37ab573392089f4c9b0)
- Update gme_inference.py (535408889784412d6f8886c67119190f5b7ab117)
- Update README.md (845c61fa06d42e9796680363dcebc18880c57855)


Co-authored-by: Xin Zhang <izhx@users.noreply.huggingface.co>

README.md ADDED
@@ -0,0 +1,3710 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - Qwen/Qwen2-VL-2B-Instruct
5
+ language:
6
+ - en
7
+ - zh
8
+ tags:
9
+ - mteb
10
+ - sentence-transformers
11
+ - transformers
12
+ - Qwen2-VL
13
+ - sentence-similarity
14
+ - vidore
15
+ model-index:
16
+ - name: gme-Qwen2-VL-2B-Instruct
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ type: mteb/amazon_counterfactual
22
+ name: MTEB AmazonCounterfactualClassification (en)
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 72.55223880597015
29
+ - type: ap
30
+ value: 35.01515316721116
31
+ - type: f1
32
+ value: 66.44086070814382
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ type: mteb/amazon_polarity
37
+ name: MTEB AmazonPolarityClassification
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 96.75819999999999
44
+ - type: ap
45
+ value: 95.51009242092881
46
+ - type: f1
47
+ value: 96.75713119357414
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ type: mteb/amazon_reviews_multi
52
+ name: MTEB AmazonReviewsClassification (en)
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 61.971999999999994
59
+ - type: f1
60
+ value: 60.50745575187704
61
+ - task:
62
+ type: Retrieval
63
+ dataset:
64
+ type: mteb/arguana
65
+ name: MTEB ArguAna
66
+ config: default
67
+ split: test
68
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
69
+ metrics:
70
+ - type: map_at_1
71
+ value: 36.272999999999996
72
+ - type: map_at_10
73
+ value: 52.782
74
+ - type: map_at_100
75
+ value: 53.339999999999996
76
+ - type: map_at_1000
77
+ value: 53.342999999999996
78
+ - type: map_at_3
79
+ value: 48.4
80
+ - type: map_at_5
81
+ value: 50.882000000000005
82
+ - type: mrr_at_1
83
+ value: 36.984
84
+ - type: mrr_at_10
85
+ value: 53.052
86
+ - type: mrr_at_100
87
+ value: 53.604
88
+ - type: mrr_at_1000
89
+ value: 53.607000000000006
90
+ - type: mrr_at_3
91
+ value: 48.613
92
+ - type: mrr_at_5
93
+ value: 51.159
94
+ - type: ndcg_at_1
95
+ value: 36.272999999999996
96
+ - type: ndcg_at_10
97
+ value: 61.524
98
+ - type: ndcg_at_100
99
+ value: 63.796
100
+ - type: ndcg_at_1000
101
+ value: 63.869
102
+ - type: ndcg_at_3
103
+ value: 52.456
104
+ - type: ndcg_at_5
105
+ value: 56.964000000000006
106
+ - type: precision_at_1
107
+ value: 36.272999999999996
108
+ - type: precision_at_10
109
+ value: 8.926
110
+ - type: precision_at_100
111
+ value: 0.989
112
+ - type: precision_at_1000
113
+ value: 0.1
114
+ - type: precision_at_3
115
+ value: 21.407999999999998
116
+ - type: precision_at_5
117
+ value: 15.049999999999999
118
+ - type: recall_at_1
119
+ value: 36.272999999999996
120
+ - type: recall_at_10
121
+ value: 89.25999999999999
122
+ - type: recall_at_100
123
+ value: 98.933
124
+ - type: recall_at_1000
125
+ value: 99.502
126
+ - type: recall_at_3
127
+ value: 64.225
128
+ - type: recall_at_5
129
+ value: 75.249
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-p2p
134
+ name: MTEB ArxivClusteringP2P
135
+ config: default
136
+ split: test
137
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
138
+ metrics:
139
+ - type: v_measure
140
+ value: 52.45236368396085
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ type: mteb/arxiv-clustering-s2s
145
+ name: MTEB ArxivClusteringS2S
146
+ config: default
147
+ split: test
148
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
149
+ metrics:
150
+ - type: v_measure
151
+ value: 46.83781937870832
152
+ - task:
153
+ type: Reranking
154
+ dataset:
155
+ type: mteb/askubuntudupquestions-reranking
156
+ name: MTEB AskUbuntuDupQuestions
157
+ config: default
158
+ split: test
159
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
160
+ metrics:
161
+ - type: map
162
+ value: 60.653430349851746
163
+ - type: mrr
164
+ value: 74.28736314470387
165
+ - task:
166
+ type: STS
167
+ dataset:
168
+ type: mteb/biosses-sts
169
+ name: MTEB BIOSSES
170
+ config: default
171
+ split: test
172
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
173
+ metrics:
174
+ - type: cos_sim_pearson
175
+ value: 89.18568151905953
176
+ - type: cos_sim_spearman
177
+ value: 86.47666922475281
178
+ - type: euclidean_pearson
179
+ value: 87.25416218056225
180
+ - type: euclidean_spearman
181
+ value: 86.47666922475281
182
+ - type: manhattan_pearson
183
+ value: 87.04960508086356
184
+ - type: manhattan_spearman
185
+ value: 86.73992823533615
186
+ - task:
187
+ type: Classification
188
+ dataset:
189
+ type: mteb/banking77
190
+ name: MTEB Banking77Classification
191
+ config: default
192
+ split: test
193
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
194
+ metrics:
195
+ - type: accuracy
196
+ value: 80.2435064935065
197
+ - type: f1
198
+ value: 79.44078343737895
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-p2p
203
+ name: MTEB BiorxivClusteringP2P
204
+ config: default
205
+ split: test
206
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
207
+ metrics:
208
+ - type: v_measure
209
+ value: 44.68220155432257
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ type: mteb/biorxiv-clustering-s2s
214
+ name: MTEB BiorxivClusteringS2S
215
+ config: default
216
+ split: test
217
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
218
+ metrics:
219
+ - type: v_measure
220
+ value: 40.666150477589284
221
+ - task:
222
+ type: Retrieval
223
+ dataset:
224
+ type: BeIR/cqadupstack
225
+ name: MTEB CQADupstackAndroidRetrieval
226
+ config: default
227
+ split: test
228
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
229
+ metrics:
230
+ - type: map_at_1
231
+ value: 30.623
232
+ - type: map_at_10
233
+ value: 40.482
234
+ - type: map_at_100
235
+ value: 41.997
236
+ - type: map_at_1000
237
+ value: 42.135
238
+ - type: map_at_3
239
+ value: 37.754
240
+ - type: map_at_5
241
+ value: 39.031
242
+ - type: mrr_at_1
243
+ value: 37.482
244
+ - type: mrr_at_10
245
+ value: 46.311
246
+ - type: mrr_at_100
247
+ value: 47.211999999999996
248
+ - type: mrr_at_1000
249
+ value: 47.27
250
+ - type: mrr_at_3
251
+ value: 44.157999999999994
252
+ - type: mrr_at_5
253
+ value: 45.145
254
+ - type: ndcg_at_1
255
+ value: 37.482
256
+ - type: ndcg_at_10
257
+ value: 46.142
258
+ - type: ndcg_at_100
259
+ value: 51.834
260
+ - type: ndcg_at_1000
261
+ value: 54.164
262
+ - type: ndcg_at_3
263
+ value: 42.309000000000005
264
+ - type: ndcg_at_5
265
+ value: 43.485
266
+ - type: precision_at_1
267
+ value: 37.482
268
+ - type: precision_at_10
269
+ value: 8.455
270
+ - type: precision_at_100
271
+ value: 1.3780000000000001
272
+ - type: precision_at_1000
273
+ value: 0.188
274
+ - type: precision_at_3
275
+ value: 20.172
276
+ - type: precision_at_5
277
+ value: 13.705
278
+ - type: recall_at_1
279
+ value: 30.623
280
+ - type: recall_at_10
281
+ value: 56.77100000000001
282
+ - type: recall_at_100
283
+ value: 80.034
284
+ - type: recall_at_1000
285
+ value: 94.62899999999999
286
+ - type: recall_at_3
287
+ value: 44.663000000000004
288
+ - type: recall_at_5
289
+ value: 48.692
290
+ - task:
291
+ type: Retrieval
292
+ dataset:
293
+ type: BeIR/cqadupstack
294
+ name: MTEB CQADupstackEnglishRetrieval
295
+ config: default
296
+ split: test
297
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
298
+ metrics:
299
+ - type: map_at_1
300
+ value: 27.941
301
+ - type: map_at_10
302
+ value: 38.437
303
+ - type: map_at_100
304
+ value: 39.625
305
+ - type: map_at_1000
306
+ value: 39.753
307
+ - type: map_at_3
308
+ value: 35.388999999999996
309
+ - type: map_at_5
310
+ value: 37.113
311
+ - type: mrr_at_1
312
+ value: 34.522000000000006
313
+ - type: mrr_at_10
314
+ value: 43.864999999999995
315
+ - type: mrr_at_100
316
+ value: 44.533
317
+ - type: mrr_at_1000
318
+ value: 44.580999999999996
319
+ - type: mrr_at_3
320
+ value: 41.55
321
+ - type: mrr_at_5
322
+ value: 42.942
323
+ - type: ndcg_at_1
324
+ value: 34.522000000000006
325
+ - type: ndcg_at_10
326
+ value: 44.330000000000005
327
+ - type: ndcg_at_100
328
+ value: 48.61
329
+ - type: ndcg_at_1000
330
+ value: 50.712999999999994
331
+ - type: ndcg_at_3
332
+ value: 39.834
333
+ - type: ndcg_at_5
334
+ value: 42.016
335
+ - type: precision_at_1
336
+ value: 34.522000000000006
337
+ - type: precision_at_10
338
+ value: 8.471
339
+ - type: precision_at_100
340
+ value: 1.3379999999999999
341
+ - type: precision_at_1000
342
+ value: 0.182
343
+ - type: precision_at_3
344
+ value: 19.363
345
+ - type: precision_at_5
346
+ value: 13.898
347
+ - type: recall_at_1
348
+ value: 27.941
349
+ - type: recall_at_10
350
+ value: 55.336
351
+ - type: recall_at_100
352
+ value: 73.51100000000001
353
+ - type: recall_at_1000
354
+ value: 86.636
355
+ - type: recall_at_3
356
+ value: 42.54
357
+ - type: recall_at_5
358
+ value: 48.392
359
+ - task:
360
+ type: Retrieval
361
+ dataset:
362
+ type: BeIR/cqadupstack
363
+ name: MTEB CQADupstackGamingRetrieval
364
+ config: default
365
+ split: test
366
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
367
+ metrics:
368
+ - type: map_at_1
369
+ value: 32.681
370
+ - type: map_at_10
371
+ value: 45.48
372
+ - type: map_at_100
373
+ value: 46.542
374
+ - type: map_at_1000
375
+ value: 46.604
376
+ - type: map_at_3
377
+ value: 42.076
378
+ - type: map_at_5
379
+ value: 44.076
380
+ - type: mrr_at_1
381
+ value: 37.492
382
+ - type: mrr_at_10
383
+ value: 48.746
384
+ - type: mrr_at_100
385
+ value: 49.485
386
+ - type: mrr_at_1000
387
+ value: 49.517
388
+ - type: mrr_at_3
389
+ value: 45.998
390
+ - type: mrr_at_5
391
+ value: 47.681000000000004
392
+ - type: ndcg_at_1
393
+ value: 37.492
394
+ - type: ndcg_at_10
395
+ value: 51.778999999999996
396
+ - type: ndcg_at_100
397
+ value: 56.294
398
+ - type: ndcg_at_1000
399
+ value: 57.58
400
+ - type: ndcg_at_3
401
+ value: 45.856
402
+ - type: ndcg_at_5
403
+ value: 48.968
404
+ - type: precision_at_1
405
+ value: 37.492
406
+ - type: precision_at_10
407
+ value: 8.620999999999999
408
+ - type: precision_at_100
409
+ value: 1.189
410
+ - type: precision_at_1000
411
+ value: 0.135
412
+ - type: precision_at_3
413
+ value: 20.773
414
+ - type: precision_at_5
415
+ value: 14.596
416
+ - type: recall_at_1
417
+ value: 32.681
418
+ - type: recall_at_10
419
+ value: 67.196
420
+ - type: recall_at_100
421
+ value: 87.027
422
+ - type: recall_at_1000
423
+ value: 96.146
424
+ - type: recall_at_3
425
+ value: 51.565000000000005
426
+ - type: recall_at_5
427
+ value: 59.123999999999995
428
+ - task:
429
+ type: Retrieval
430
+ dataset:
431
+ type: BeIR/cqadupstack
432
+ name: MTEB CQADupstackGisRetrieval
433
+ config: default
434
+ split: test
435
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
436
+ metrics:
437
+ - type: map_at_1
438
+ value: 22.421
439
+ - type: map_at_10
440
+ value: 30.127
441
+ - type: map_at_100
442
+ value: 31.253999999999998
443
+ - type: map_at_1000
444
+ value: 31.344
445
+ - type: map_at_3
446
+ value: 27.673
447
+ - type: map_at_5
448
+ value: 29.182000000000002
449
+ - type: mrr_at_1
450
+ value: 24.068
451
+ - type: mrr_at_10
452
+ value: 31.857000000000003
453
+ - type: mrr_at_100
454
+ value: 32.808
455
+ - type: mrr_at_1000
456
+ value: 32.881
457
+ - type: mrr_at_3
458
+ value: 29.397000000000002
459
+ - type: mrr_at_5
460
+ value: 30.883
461
+ - type: ndcg_at_1
462
+ value: 24.068
463
+ - type: ndcg_at_10
464
+ value: 34.642
465
+ - type: ndcg_at_100
466
+ value: 40.327
467
+ - type: ndcg_at_1000
468
+ value: 42.55
469
+ - type: ndcg_at_3
470
+ value: 29.868
471
+ - type: ndcg_at_5
472
+ value: 32.461
473
+ - type: precision_at_1
474
+ value: 24.068
475
+ - type: precision_at_10
476
+ value: 5.390000000000001
477
+ - type: precision_at_100
478
+ value: 0.873
479
+ - type: precision_at_1000
480
+ value: 0.109
481
+ - type: precision_at_3
482
+ value: 12.692999999999998
483
+ - type: precision_at_5
484
+ value: 9.107
485
+ - type: recall_at_1
486
+ value: 22.421
487
+ - type: recall_at_10
488
+ value: 46.846
489
+ - type: recall_at_100
490
+ value: 73.409
491
+ - type: recall_at_1000
492
+ value: 90.06
493
+ - type: recall_at_3
494
+ value: 34.198
495
+ - type: recall_at_5
496
+ value: 40.437
497
+ - task:
498
+ type: Retrieval
499
+ dataset:
500
+ type: BeIR/cqadupstack
501
+ name: MTEB CQADupstackMathematicaRetrieval
502
+ config: default
503
+ split: test
504
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
505
+ metrics:
506
+ - type: map_at_1
507
+ value: 16.494
508
+ - type: map_at_10
509
+ value: 24.4
510
+ - type: map_at_100
511
+ value: 25.718999999999998
512
+ - type: map_at_1000
513
+ value: 25.840000000000003
514
+ - type: map_at_3
515
+ value: 21.731
516
+ - type: map_at_5
517
+ value: 23.247999999999998
518
+ - type: mrr_at_1
519
+ value: 20.274
520
+ - type: mrr_at_10
521
+ value: 28.866000000000003
522
+ - type: mrr_at_100
523
+ value: 29.889
524
+ - type: mrr_at_1000
525
+ value: 29.957
526
+ - type: mrr_at_3
527
+ value: 26.284999999999997
528
+ - type: mrr_at_5
529
+ value: 27.79
530
+ - type: ndcg_at_1
531
+ value: 20.274
532
+ - type: ndcg_at_10
533
+ value: 29.666999999999998
534
+ - type: ndcg_at_100
535
+ value: 36.095
536
+ - type: ndcg_at_1000
537
+ value: 38.87
538
+ - type: ndcg_at_3
539
+ value: 24.672
540
+ - type: ndcg_at_5
541
+ value: 27.106
542
+ - type: precision_at_1
543
+ value: 20.274
544
+ - type: precision_at_10
545
+ value: 5.5969999999999995
546
+ - type: precision_at_100
547
+ value: 1.04
548
+ - type: precision_at_1000
549
+ value: 0.14100000000000001
550
+ - type: precision_at_3
551
+ value: 12.023
552
+ - type: precision_at_5
553
+ value: 8.98
554
+ - type: recall_at_1
555
+ value: 16.494
556
+ - type: recall_at_10
557
+ value: 41.400999999999996
558
+ - type: recall_at_100
559
+ value: 69.811
560
+ - type: recall_at_1000
561
+ value: 89.422
562
+ - type: recall_at_3
563
+ value: 27.834999999999997
564
+ - type: recall_at_5
565
+ value: 33.774
566
+ - task:
567
+ type: Retrieval
568
+ dataset:
569
+ type: BeIR/cqadupstack
570
+ name: MTEB CQADupstackPhysicsRetrieval
571
+ config: default
572
+ split: test
573
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
574
+ metrics:
575
+ - type: map_at_1
576
+ value: 26.150000000000002
577
+ - type: map_at_10
578
+ value: 36.012
579
+ - type: map_at_100
580
+ value: 37.377
581
+ - type: map_at_1000
582
+ value: 37.497
583
+ - type: map_at_3
584
+ value: 32.712
585
+ - type: map_at_5
586
+ value: 34.475
587
+ - type: mrr_at_1
588
+ value: 32.05
589
+ - type: mrr_at_10
590
+ value: 41.556
591
+ - type: mrr_at_100
592
+ value: 42.451
593
+ - type: mrr_at_1000
594
+ value: 42.498000000000005
595
+ - type: mrr_at_3
596
+ value: 38.659
597
+ - type: mrr_at_5
598
+ value: 40.314
599
+ - type: ndcg_at_1
600
+ value: 32.05
601
+ - type: ndcg_at_10
602
+ value: 42.132
603
+ - type: ndcg_at_100
604
+ value: 48.028999999999996
605
+ - type: ndcg_at_1000
606
+ value: 50.229
607
+ - type: ndcg_at_3
608
+ value: 36.622
609
+ - type: ndcg_at_5
610
+ value: 39.062000000000005
611
+ - type: precision_at_1
612
+ value: 32.05
613
+ - type: precision_at_10
614
+ value: 7.767
615
+ - type: precision_at_100
616
+ value: 1.269
617
+ - type: precision_at_1000
618
+ value: 0.164
619
+ - type: precision_at_3
620
+ value: 17.355999999999998
621
+ - type: precision_at_5
622
+ value: 12.474
623
+ - type: recall_at_1
624
+ value: 26.150000000000002
625
+ - type: recall_at_10
626
+ value: 55.205000000000005
627
+ - type: recall_at_100
628
+ value: 80.2
629
+ - type: recall_at_1000
630
+ value: 94.524
631
+ - type: recall_at_3
632
+ value: 39.322
633
+ - type: recall_at_5
634
+ value: 45.761
635
+ - task:
636
+ type: Retrieval
637
+ dataset:
638
+ type: BeIR/cqadupstack
639
+ name: MTEB CQADupstackProgrammersRetrieval
640
+ config: default
641
+ split: test
642
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
643
+ metrics:
644
+ - type: map_at_1
645
+ value: 23.741
646
+ - type: map_at_10
647
+ value: 33.51
648
+ - type: map_at_100
649
+ value: 34.882999999999996
650
+ - type: map_at_1000
651
+ value: 34.995
652
+ - type: map_at_3
653
+ value: 30.514000000000003
654
+ - type: map_at_5
655
+ value: 32.085
656
+ - type: mrr_at_1
657
+ value: 28.653000000000002
658
+ - type: mrr_at_10
659
+ value: 38.059
660
+ - type: mrr_at_100
661
+ value: 39.050000000000004
662
+ - type: mrr_at_1000
663
+ value: 39.107
664
+ - type: mrr_at_3
665
+ value: 35.445
666
+ - type: mrr_at_5
667
+ value: 36.849
668
+ - type: ndcg_at_1
669
+ value: 28.653000000000002
670
+ - type: ndcg_at_10
671
+ value: 39.186
672
+ - type: ndcg_at_100
673
+ value: 45.301
674
+ - type: ndcg_at_1000
675
+ value: 47.547
676
+ - type: ndcg_at_3
677
+ value: 34.103
678
+ - type: ndcg_at_5
679
+ value: 36.239
680
+ - type: precision_at_1
681
+ value: 28.653000000000002
682
+ - type: precision_at_10
683
+ value: 7.295
684
+ - type: precision_at_100
685
+ value: 1.2189999999999999
686
+ - type: precision_at_1000
687
+ value: 0.159
688
+ - type: precision_at_3
689
+ value: 16.438
690
+ - type: precision_at_5
691
+ value: 11.804
692
+ - type: recall_at_1
693
+ value: 23.741
694
+ - type: recall_at_10
695
+ value: 51.675000000000004
696
+ - type: recall_at_100
697
+ value: 78.13799999999999
698
+ - type: recall_at_1000
699
+ value: 93.12700000000001
700
+ - type: recall_at_3
701
+ value: 37.033
702
+ - type: recall_at_5
703
+ value: 42.793
704
+ - task:
705
+ type: Retrieval
706
+ dataset:
707
+ type: BeIR/cqadupstack
708
+ name: MTEB CQADupstackStatsRetrieval
709
+ config: default
710
+ split: test
711
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
712
+ metrics:
713
+ - type: map_at_1
714
+ value: 23.452
715
+ - type: map_at_10
716
+ value: 30.231
717
+ - type: map_at_100
718
+ value: 31.227
719
+ - type: map_at_1000
720
+ value: 31.338
721
+ - type: map_at_3
722
+ value: 28.083000000000002
723
+ - type: map_at_5
724
+ value: 29.125
725
+ - type: mrr_at_1
726
+ value: 25.613000000000003
727
+ - type: mrr_at_10
728
+ value: 32.62
729
+ - type: mrr_at_100
730
+ value: 33.469
731
+ - type: mrr_at_1000
732
+ value: 33.554
733
+ - type: mrr_at_3
734
+ value: 30.368000000000002
735
+ - type: mrr_at_5
736
+ value: 31.502999999999997
737
+ - type: ndcg_at_1
738
+ value: 25.613000000000003
739
+ - type: ndcg_at_10
740
+ value: 34.441
741
+ - type: ndcg_at_100
742
+ value: 39.253
743
+ - type: ndcg_at_1000
744
+ value: 42.105
745
+ - type: ndcg_at_3
746
+ value: 30.183
747
+ - type: ndcg_at_5
748
+ value: 31.917
749
+ - type: precision_at_1
750
+ value: 25.613000000000003
751
+ - type: precision_at_10
752
+ value: 5.367999999999999
753
+ - type: precision_at_100
754
+ value: 0.848
755
+ - type: precision_at_1000
756
+ value: 0.117
757
+ - type: precision_at_3
758
+ value: 12.73
759
+ - type: precision_at_5
760
+ value: 8.773
761
+ - type: recall_at_1
762
+ value: 23.452
763
+ - type: recall_at_10
764
+ value: 45.021
765
+ - type: recall_at_100
766
+ value: 66.563
767
+ - type: recall_at_1000
768
+ value: 87.713
769
+ - type: recall_at_3
770
+ value: 33.433
771
+ - type: recall_at_5
772
+ value: 37.637
773
+ - task:
774
+ type: Retrieval
775
+ dataset:
776
+ type: BeIR/cqadupstack
777
+ name: MTEB CQADupstackTexRetrieval
778
+ config: default
779
+ split: test
780
+ revision: 46989137a86843e03a6195de44b09deda022eec7
781
+ metrics:
782
+ - type: map_at_1
783
+ value: 16.11
784
+ - type: map_at_10
785
+ value: 22.832
786
+ - type: map_at_100
787
+ value: 23.829
788
+ - type: map_at_1000
789
+ value: 23.959
790
+ - type: map_at_3
791
+ value: 20.66
792
+ - type: map_at_5
793
+ value: 21.851000000000003
794
+ - type: mrr_at_1
795
+ value: 19.408
796
+ - type: mrr_at_10
797
+ value: 26.354
798
+ - type: mrr_at_100
799
+ value: 27.237000000000002
800
+ - type: mrr_at_1000
801
+ value: 27.32
802
+ - type: mrr_at_3
803
+ value: 24.243000000000002
804
+ - type: mrr_at_5
805
+ value: 25.430000000000003
806
+ - type: ndcg_at_1
807
+ value: 19.408
808
+ - type: ndcg_at_10
809
+ value: 27.239
810
+ - type: ndcg_at_100
811
+ value: 32.286
812
+ - type: ndcg_at_1000
813
+ value: 35.498000000000005
814
+ - type: ndcg_at_3
815
+ value: 23.244
816
+ - type: ndcg_at_5
817
+ value: 25.080999999999996
818
+ - type: precision_at_1
819
+ value: 19.408
820
+ - type: precision_at_10
821
+ value: 4.917
822
+ - type: precision_at_100
823
+ value: 0.874
824
+ - type: precision_at_1000
825
+ value: 0.133
826
+ - type: precision_at_3
827
+ value: 10.863
828
+ - type: precision_at_5
829
+ value: 7.887
830
+ - type: recall_at_1
831
+ value: 16.11
832
+ - type: recall_at_10
833
+ value: 37.075
834
+ - type: recall_at_100
835
+ value: 60.251999999999995
836
+ - type: recall_at_1000
837
+ value: 83.38600000000001
838
+ - type: recall_at_3
839
+ value: 25.901999999999997
840
+ - type: recall_at_5
841
+ value: 30.612000000000002
842
+ - task:
843
+ type: Retrieval
844
+ dataset:
845
+ type: BeIR/cqadupstack
846
+ name: MTEB CQADupstackUnixRetrieval
847
+ config: default
848
+ split: test
849
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
850
+ metrics:
851
+ - type: map_at_1
852
+ value: 25.941
853
+ - type: map_at_10
854
+ value: 33.711999999999996
855
+ - type: map_at_100
856
+ value: 34.926
857
+ - type: map_at_1000
858
+ value: 35.05
859
+ - type: map_at_3
860
+ value: 31.075000000000003
861
+ - type: map_at_5
862
+ value: 32.611000000000004
863
+ - type: mrr_at_1
864
+ value: 30.784
865
+ - type: mrr_at_10
866
+ value: 38.079
867
+ - type: mrr_at_100
868
+ value: 39.018
869
+ - type: mrr_at_1000
870
+ value: 39.09
871
+ - type: mrr_at_3
872
+ value: 35.603
873
+ - type: mrr_at_5
874
+ value: 36.988
875
+ - type: ndcg_at_1
876
+ value: 30.784
877
+ - type: ndcg_at_10
878
+ value: 38.586
879
+ - type: ndcg_at_100
880
+ value: 44.205
881
+ - type: ndcg_at_1000
882
+ value: 46.916000000000004
883
+ - type: ndcg_at_3
884
+ value: 33.899
885
+ - type: ndcg_at_5
886
+ value: 36.11
887
+ - type: precision_at_1
888
+ value: 30.784
889
+ - type: precision_at_10
890
+ value: 6.409
891
+ - type: precision_at_100
892
+ value: 1.034
893
+ - type: precision_at_1000
894
+ value: 0.13799999999999998
895
+ - type: precision_at_3
896
+ value: 15.112
897
+ - type: precision_at_5
898
+ value: 10.728
899
+ - type: recall_at_1
900
+ value: 25.941
901
+ - type: recall_at_10
902
+ value: 49.242999999999995
903
+ - type: recall_at_100
904
+ value: 73.85000000000001
905
+ - type: recall_at_1000
906
+ value: 92.782
907
+ - type: recall_at_3
908
+ value: 36.204
909
+ - type: recall_at_5
910
+ value: 41.908
911
+ - task:
912
+ type: Retrieval
913
+ dataset:
914
+ type: BeIR/cqadupstack
915
+ name: MTEB CQADupstackWebmastersRetrieval
916
+ config: default
917
+ split: test
918
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
919
+ metrics:
920
+ - type: map_at_1
921
+ value: 24.401999999999997
922
+ - type: map_at_10
923
+ value: 33.195
924
+ - type: map_at_100
925
+ value: 34.699999999999996
926
+ - type: map_at_1000
927
+ value: 34.946
928
+ - type: map_at_3
929
+ value: 30.570999999999998
930
+ - type: map_at_5
931
+ value: 32.0
932
+ - type: mrr_at_1
933
+ value: 28.656
934
+ - type: mrr_at_10
935
+ value: 37.039
936
+ - type: mrr_at_100
937
+ value: 38.049
938
+ - type: mrr_at_1000
939
+ value: 38.108
940
+ - type: mrr_at_3
941
+ value: 34.717
942
+ - type: mrr_at_5
943
+ value: 36.07
944
+ - type: ndcg_at_1
945
+ value: 28.656
946
+ - type: ndcg_at_10
947
+ value: 38.557
948
+ - type: ndcg_at_100
949
+ value: 44.511
950
+ - type: ndcg_at_1000
951
+ value: 47.346
952
+ - type: ndcg_at_3
953
+ value: 34.235
954
+ - type: ndcg_at_5
955
+ value: 36.260999999999996
956
+ - type: precision_at_1
957
+ value: 28.656
958
+ - type: precision_at_10
959
+ value: 7.312
960
+ - type: precision_at_100
961
+ value: 1.451
962
+ - type: precision_at_1000
963
+ value: 0.242
964
+ - type: precision_at_3
965
+ value: 15.942
966
+ - type: precision_at_5
967
+ value: 11.66
968
+ - type: recall_at_1
969
+ value: 24.401999999999997
970
+ - type: recall_at_10
971
+ value: 48.791000000000004
972
+ - type: recall_at_100
973
+ value: 76.211
974
+ - type: recall_at_1000
975
+ value: 93.92
976
+ - type: recall_at_3
977
+ value: 36.975
978
+ - type: recall_at_5
979
+ value: 42.01
980
+ - task:
981
+ type: Retrieval
982
+ dataset:
983
+ type: BeIR/cqadupstack
984
+ name: MTEB CQADupstackWordpressRetrieval
985
+ config: default
986
+ split: test
987
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
988
+ metrics:
989
+ - type: map_at_1
990
+ value: 19.07
991
+ - type: map_at_10
992
+ value: 26.608999999999998
993
+ - type: map_at_100
994
+ value: 27.625
995
+ - type: map_at_1000
996
+ value: 27.743000000000002
997
+ - type: map_at_3
998
+ value: 24.532999999999998
999
+ - type: map_at_5
1000
+ value: 25.671
1001
+ - type: mrr_at_1
1002
+ value: 20.518
1003
+ - type: mrr_at_10
1004
+ value: 28.541
1005
+ - type: mrr_at_100
1006
+ value: 29.453000000000003
1007
+ - type: mrr_at_1000
1008
+ value: 29.536
1009
+ - type: mrr_at_3
1010
+ value: 26.71
1011
+ - type: mrr_at_5
1012
+ value: 27.708
1013
+ - type: ndcg_at_1
1014
+ value: 20.518
1015
+ - type: ndcg_at_10
1016
+ value: 30.855
1017
+ - type: ndcg_at_100
1018
+ value: 35.973
1019
+ - type: ndcg_at_1000
1020
+ value: 38.827
1021
+ - type: ndcg_at_3
1022
+ value: 26.868
1023
+ - type: ndcg_at_5
1024
+ value: 28.74
1025
+ - type: precision_at_1
1026
+ value: 20.518
1027
+ - type: precision_at_10
1028
+ value: 4.843
1029
+ - type: precision_at_100
1030
+ value: 0.799
1031
+ - type: precision_at_1000
1032
+ value: 0.116
1033
+ - type: precision_at_3
1034
+ value: 11.645
1035
+ - type: precision_at_5
1036
+ value: 8.133
1037
+ - type: recall_at_1
1038
+ value: 19.07
1039
+ - type: recall_at_10
1040
+ value: 41.925000000000004
1041
+ - type: recall_at_100
1042
+ value: 65.68
1043
+ - type: recall_at_1000
1044
+ value: 86.713
1045
+ - type: recall_at_3
1046
+ value: 31.251
1047
+ - type: recall_at_5
1048
+ value: 35.653
1049
+ - task:
1050
+ type: Retrieval
1051
+ dataset:
1052
+ type: mteb/climate-fever
1053
+ name: MTEB ClimateFEVER
1054
+ config: default
1055
+ split: test
1056
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1057
+ metrics:
1058
+ - type: map_at_1
1059
+ value: 18.762
1060
+ - type: map_at_10
1061
+ value: 32.412
1062
+ - type: map_at_100
1063
+ value: 34.506
1064
+ - type: map_at_1000
1065
+ value: 34.678
1066
+ - type: map_at_3
1067
+ value: 27.594
1068
+ - type: map_at_5
1069
+ value: 30.128
1070
+ - type: mrr_at_1
1071
+ value: 42.345
1072
+ - type: mrr_at_10
1073
+ value: 54.443
1074
+ - type: mrr_at_100
1075
+ value: 55.05799999999999
1076
+ - type: mrr_at_1000
1077
+ value: 55.076
1078
+ - type: mrr_at_3
1079
+ value: 51.553000000000004
1080
+ - type: mrr_at_5
1081
+ value: 53.269
1082
+ - type: ndcg_at_1
1083
+ value: 42.345
1084
+ - type: ndcg_at_10
1085
+ value: 42.304
1086
+ - type: ndcg_at_100
1087
+ value: 49.425000000000004
1088
+ - type: ndcg_at_1000
1089
+ value: 52.123
1090
+ - type: ndcg_at_3
1091
+ value: 36.271
1092
+ - type: ndcg_at_5
1093
+ value: 38.216
1094
+ - type: precision_at_1
1095
+ value: 42.345
1096
+ - type: precision_at_10
1097
+ value: 12.808
1098
+ - type: precision_at_100
1099
+ value: 2.062
1100
+ - type: precision_at_1000
1101
+ value: 0.258
1102
+ - type: precision_at_3
1103
+ value: 26.840000000000003
1104
+ - type: precision_at_5
1105
+ value: 20.052
1106
+ - type: recall_at_1
1107
+ value: 18.762
1108
+ - type: recall_at_10
1109
+ value: 47.976
1110
+ - type: recall_at_100
1111
+ value: 71.86
1112
+ - type: recall_at_1000
1113
+ value: 86.61999999999999
1114
+ - type: recall_at_3
1115
+ value: 32.708999999999996
1116
+ - type: recall_at_5
1117
+ value: 39.151
1118
+ - task:
1119
+ type: Retrieval
1120
+ dataset:
1121
+ type: mteb/dbpedia
1122
+ name: MTEB DBPedia
1123
+ config: default
1124
+ split: test
1125
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1126
+ metrics:
1127
+ - type: map_at_1
1128
+ value: 9.685
1129
+ - type: map_at_10
1130
+ value: 21.65
1131
+ - type: map_at_100
1132
+ value: 30.952
1133
+ - type: map_at_1000
1134
+ value: 33.049
1135
+ - type: map_at_3
1136
+ value: 14.953
1137
+ - type: map_at_5
1138
+ value: 17.592
1139
+ - type: mrr_at_1
1140
+ value: 72.0
1141
+ - type: mrr_at_10
1142
+ value: 78.054
1143
+ - type: mrr_at_100
1144
+ value: 78.41900000000001
1145
+ - type: mrr_at_1000
1146
+ value: 78.425
1147
+ - type: mrr_at_3
1148
+ value: 76.5
1149
+ - type: mrr_at_5
1150
+ value: 77.28699999999999
1151
+ - type: ndcg_at_1
1152
+ value: 61.25000000000001
1153
+ - type: ndcg_at_10
1154
+ value: 46.306000000000004
1155
+ - type: ndcg_at_100
1156
+ value: 50.867
1157
+ - type: ndcg_at_1000
1158
+ value: 58.533
1159
+ - type: ndcg_at_3
1160
+ value: 50.857
1161
+ - type: ndcg_at_5
1162
+ value: 48.283
1163
+ - type: precision_at_1
1164
+ value: 72.0
1165
+ - type: precision_at_10
1166
+ value: 37.3
1167
+ - type: precision_at_100
1168
+ value: 11.95
1169
+ - type: precision_at_1000
1170
+ value: 2.528
1171
+ - type: precision_at_3
1172
+ value: 53.583000000000006
1173
+ - type: precision_at_5
1174
+ value: 46.6
1175
+ - type: recall_at_1
1176
+ value: 9.685
1177
+ - type: recall_at_10
1178
+ value: 27.474999999999998
1179
+ - type: recall_at_100
1180
+ value: 56.825
1181
+ - type: recall_at_1000
1182
+ value: 81.792
1183
+ - type: recall_at_3
1184
+ value: 15.939
1185
+ - type: recall_at_5
1186
+ value: 19.853
1187
+ - task:
1188
+ type: Classification
1189
+ dataset:
1190
+ type: mteb/emotion
1191
+ name: MTEB EmotionClassification
1192
+ config: default
1193
+ split: test
1194
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1195
+ metrics:
1196
+ - type: accuracy
1197
+ value: 62.805000000000014
1198
+ - type: f1
1199
+ value: 56.401757250989384
1200
+ - task:
1201
+ type: Retrieval
1202
+ dataset:
1203
+ type: mteb/fever
1204
+ name: MTEB FEVER
1205
+ config: default
1206
+ split: test
1207
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1208
+ metrics:
1209
+ - type: map_at_1
1210
+ value: 83.734
1211
+ - type: map_at_10
1212
+ value: 90.089
1213
+ - type: map_at_100
1214
+ value: 90.274
1215
+ - type: map_at_1000
1216
+ value: 90.286
1217
+ - type: map_at_3
1218
+ value: 89.281
1219
+ - type: map_at_5
1220
+ value: 89.774
1221
+ - type: mrr_at_1
1222
+ value: 90.039
1223
+ - type: mrr_at_10
1224
+ value: 94.218
1225
+ - type: mrr_at_100
1226
+ value: 94.24
1227
+ - type: mrr_at_1000
1228
+ value: 94.24
1229
+ - type: mrr_at_3
1230
+ value: 93.979
1231
+ - type: mrr_at_5
1232
+ value: 94.137
1233
+ - type: ndcg_at_1
1234
+ value: 90.039
1235
+ - type: ndcg_at_10
1236
+ value: 92.597
1237
+ - type: ndcg_at_100
1238
+ value: 93.147
1239
+ - type: ndcg_at_1000
1240
+ value: 93.325
1241
+ - type: ndcg_at_3
1242
+ value: 91.64999999999999
1243
+ - type: ndcg_at_5
1244
+ value: 92.137
1245
+ - type: precision_at_1
1246
+ value: 90.039
1247
+ - type: precision_at_10
1248
+ value: 10.809000000000001
1249
+ - type: precision_at_100
1250
+ value: 1.133
1251
+ - type: precision_at_1000
1252
+ value: 0.116
1253
+ - type: precision_at_3
1254
+ value: 34.338
1255
+ - type: precision_at_5
1256
+ value: 21.089
1257
+ - type: recall_at_1
1258
+ value: 83.734
1259
+ - type: recall_at_10
1260
+ value: 96.161
1261
+ - type: recall_at_100
1262
+ value: 98.137
1263
+ - type: recall_at_1000
1264
+ value: 99.182
1265
+ - type: recall_at_3
1266
+ value: 93.551
1267
+ - type: recall_at_5
1268
+ value: 94.878
1269
+ - task:
1270
+ type: Retrieval
1271
+ dataset:
1272
+ type: mteb/fiqa
1273
+ name: MTEB FiQA2018
1274
+ config: default
1275
+ split: test
1276
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1277
+ metrics:
1278
+ - type: map_at_1
1279
+ value: 24.529999999999998
1280
+ - type: map_at_10
1281
+ value: 37.229
1282
+ - type: map_at_100
1283
+ value: 39.333
1284
+ - type: map_at_1000
1285
+ value: 39.491
1286
+ - type: map_at_3
1287
+ value: 32.177
1288
+ - type: map_at_5
1289
+ value: 35.077999999999996
1290
+ - type: mrr_at_1
1291
+ value: 45.678999999999995
1292
+ - type: mrr_at_10
1293
+ value: 53.952
1294
+ - type: mrr_at_100
1295
+ value: 54.727000000000004
1296
+ - type: mrr_at_1000
1297
+ value: 54.761
1298
+ - type: mrr_at_3
1299
+ value: 51.568999999999996
1300
+ - type: mrr_at_5
1301
+ value: 52.973000000000006
1302
+ - type: ndcg_at_1
1303
+ value: 45.678999999999995
1304
+ - type: ndcg_at_10
1305
+ value: 45.297
1306
+ - type: ndcg_at_100
1307
+ value: 52.516
1308
+ - type: ndcg_at_1000
1309
+ value: 55.16
1310
+ - type: ndcg_at_3
1311
+ value: 40.569
1312
+ - type: ndcg_at_5
1313
+ value: 42.49
1314
+ - type: precision_at_1
1315
+ value: 45.678999999999995
1316
+ - type: precision_at_10
1317
+ value: 12.269
1318
+ - type: precision_at_100
1319
+ value: 1.9709999999999999
1320
+ - type: precision_at_1000
1321
+ value: 0.244
1322
+ - type: precision_at_3
1323
+ value: 25.72
1324
+ - type: precision_at_5
1325
+ value: 19.66
1326
+ - type: recall_at_1
1327
+ value: 24.529999999999998
1328
+ - type: recall_at_10
1329
+ value: 51.983999999999995
1330
+ - type: recall_at_100
1331
+ value: 78.217
1332
+ - type: recall_at_1000
1333
+ value: 94.104
1334
+ - type: recall_at_3
1335
+ value: 36.449999999999996
1336
+ - type: recall_at_5
1337
+ value: 43.336999999999996
1338
+ - task:
1339
+ type: Retrieval
1340
+ dataset:
1341
+ type: mteb/hotpotqa
1342
+ name: MTEB HotpotQA
1343
+ config: default
1344
+ split: test
1345
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1346
+ metrics:
1347
+ - type: map_at_1
1348
+ value: 41.519
1349
+ - type: map_at_10
1350
+ value: 64.705
1351
+ - type: map_at_100
1352
+ value: 65.554
1353
+ - type: map_at_1000
1354
+ value: 65.613
1355
+ - type: map_at_3
1356
+ value: 61.478
1357
+ - type: map_at_5
1358
+ value: 63.55800000000001
1359
+ - type: mrr_at_1
1360
+ value: 83.038
1361
+ - type: mrr_at_10
1362
+ value: 87.82900000000001
1363
+ - type: mrr_at_100
1364
+ value: 87.96000000000001
1365
+ - type: mrr_at_1000
1366
+ value: 87.96300000000001
1367
+ - type: mrr_at_3
1368
+ value: 87.047
1369
+ - type: mrr_at_5
1370
+ value: 87.546
1371
+ - type: ndcg_at_1
1372
+ value: 83.038
1373
+ - type: ndcg_at_10
1374
+ value: 72.928
1375
+ - type: ndcg_at_100
1376
+ value: 75.778
1377
+ - type: ndcg_at_1000
1378
+ value: 76.866
1379
+ - type: ndcg_at_3
1380
+ value: 68.46600000000001
1381
+ - type: ndcg_at_5
1382
+ value: 71.036
1383
+ - type: precision_at_1
1384
+ value: 83.038
1385
+ - type: precision_at_10
1386
+ value: 15.040999999999999
1387
+ - type: precision_at_100
1388
+ value: 1.7260000000000002
1389
+ - type: precision_at_1000
1390
+ value: 0.187
1391
+ - type: precision_at_3
1392
+ value: 43.597
1393
+ - type: precision_at_5
1394
+ value: 28.188999999999997
1395
+ - type: recall_at_1
1396
+ value: 41.519
1397
+ - type: recall_at_10
1398
+ value: 75.20599999999999
1399
+ - type: recall_at_100
1400
+ value: 86.3
1401
+ - type: recall_at_1000
1402
+ value: 93.437
1403
+ - type: recall_at_3
1404
+ value: 65.39500000000001
1405
+ - type: recall_at_5
1406
+ value: 70.473
1407
+ - task:
1408
+ type: Classification
1409
+ dataset:
1410
+ type: mteb/imdb
1411
+ name: MTEB ImdbClassification
1412
+ config: default
1413
+ split: test
1414
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1415
+ metrics:
1416
+ - type: accuracy
1417
+ value: 96.0428
1418
+ - type: ap
1419
+ value: 94.48278082595033
1420
+ - type: f1
1421
+ value: 96.0409595432081
1422
+ - task:
1423
+ type: Retrieval
1424
+ dataset:
1425
+ type: mteb/msmarco
1426
+ name: MTEB MSMARCO
1427
+ config: default
1428
+ split: dev
1429
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1430
+ metrics:
1431
+ - type: map_at_1
1432
+ value: 21.496000000000002
1433
+ - type: map_at_10
1434
+ value: 33.82
1435
+ - type: map_at_100
1436
+ value: 35.013
1437
+ - type: map_at_1000
1438
+ value: 35.063
1439
+ - type: map_at_3
1440
+ value: 29.910999999999998
1441
+ - type: map_at_5
1442
+ value: 32.086
1443
+ - type: mrr_at_1
1444
+ value: 22.092
1445
+ - type: mrr_at_10
1446
+ value: 34.404
1447
+ - type: mrr_at_100
1448
+ value: 35.534
1449
+ - type: mrr_at_1000
1450
+ value: 35.577999999999996
1451
+ - type: mrr_at_3
1452
+ value: 30.544
1453
+ - type: mrr_at_5
1454
+ value: 32.711
1455
+ - type: ndcg_at_1
1456
+ value: 22.092
1457
+ - type: ndcg_at_10
1458
+ value: 40.877
1459
+ - type: ndcg_at_100
1460
+ value: 46.619
1461
+ - type: ndcg_at_1000
1462
+ value: 47.823
1463
+ - type: ndcg_at_3
1464
+ value: 32.861000000000004
1465
+ - type: ndcg_at_5
1466
+ value: 36.769
1467
+ - type: precision_at_1
1468
+ value: 22.092
1469
+ - type: precision_at_10
1470
+ value: 6.54
1471
+ - type: precision_at_100
1472
+ value: 0.943
1473
+ - type: precision_at_1000
1474
+ value: 0.105
1475
+ - type: precision_at_3
1476
+ value: 14.069
1477
+ - type: precision_at_5
1478
+ value: 10.424
1479
+ - type: recall_at_1
1480
+ value: 21.496000000000002
1481
+ - type: recall_at_10
1482
+ value: 62.67
1483
+ - type: recall_at_100
1484
+ value: 89.24499999999999
1485
+ - type: recall_at_1000
1486
+ value: 98.312
1487
+ - type: recall_at_3
1488
+ value: 40.796
1489
+ - type: recall_at_5
1490
+ value: 50.21600000000001
1491
+ - task:
1492
+ type: Classification
1493
+ dataset:
1494
+ type: mteb/mtop_domain
1495
+ name: MTEB MTOPDomainClassification (en)
1496
+ config: en
1497
+ split: test
1498
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1499
+ metrics:
1500
+ - type: accuracy
1501
+ value: 95.74555403556772
1502
+ - type: f1
1503
+ value: 95.61381879323093
1504
+ - task:
1505
+ type: Classification
1506
+ dataset:
1507
+ type: mteb/mtop_intent
1508
+ name: MTEB MTOPIntentClassification (en)
1509
+ config: en
1510
+ split: test
1511
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1512
+ metrics:
1513
+ - type: accuracy
1514
+ value: 85.82763337893297
1515
+ - type: f1
1516
+ value: 63.17139719465236
1517
+ - task:
1518
+ type: Classification
1519
+ dataset:
1520
+ type: mteb/amazon_massive_intent
1521
+ name: MTEB MassiveIntentClassification (en)
1522
+ config: en
1523
+ split: test
1524
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1525
+ metrics:
1526
+ - type: accuracy
1527
+ value: 78.51714862138535
1528
+ - type: f1
1529
+ value: 76.3995118440293
1530
+ - task:
1531
+ type: Classification
1532
+ dataset:
1533
+ type: mteb/amazon_massive_scenario
1534
+ name: MTEB MassiveScenarioClassification (en)
1535
+ config: en
1536
+ split: test
1537
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1538
+ metrics:
1539
+ - type: accuracy
1540
+ value: 80.03698722259583
1541
+ - type: f1
1542
+ value: 79.36511484240766
1543
+ - task:
1544
+ type: Clustering
1545
+ dataset:
1546
+ type: mteb/medrxiv-clustering-p2p
1547
+ name: MTEB MedrxivClusteringP2P
1548
+ config: default
1549
+ split: test
1550
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1551
+ metrics:
1552
+ - type: v_measure
1553
+ value: 38.68901889835701
1554
+ - task:
1555
+ type: Clustering
1556
+ dataset:
1557
+ type: mteb/medrxiv-clustering-s2s
1558
+ name: MTEB MedrxivClusteringS2S
1559
+ config: default
1560
+ split: test
1561
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1562
+ metrics:
1563
+ - type: v_measure
1564
+ value: 38.0740589898848
1565
+ - task:
1566
+ type: Reranking
1567
+ dataset:
1568
+ type: mteb/mind_small
1569
+ name: MTEB MindSmallReranking
1570
+ config: default
1571
+ split: test
1572
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1573
+ metrics:
1574
+ - type: map
1575
+ value: 33.41312482460189
1576
+ - type: mrr
1577
+ value: 34.713530863302495
1578
+ - task:
1579
+ type: Retrieval
1580
+ dataset:
1581
+ type: mteb/nfcorpus
1582
+ name: MTEB NFCorpus
1583
+ config: default
1584
+ split: test
1585
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1586
+ metrics:
1587
+ - type: map_at_1
1588
+ value: 6.232
1589
+ - type: map_at_10
1590
+ value: 13.442000000000002
1591
+ - type: map_at_100
1592
+ value: 17.443
1593
+ - type: map_at_1000
1594
+ value: 19.1
1595
+ - type: map_at_3
1596
+ value: 9.794
1597
+ - type: map_at_5
1598
+ value: 11.375
1599
+ - type: mrr_at_1
1600
+ value: 50.15500000000001
1601
+ - type: mrr_at_10
1602
+ value: 58.628
1603
+ - type: mrr_at_100
1604
+ value: 59.077
1605
+ - type: mrr_at_1000
1606
+ value: 59.119
1607
+ - type: mrr_at_3
1608
+ value: 56.914
1609
+ - type: mrr_at_5
1610
+ value: 57.921
1611
+ - type: ndcg_at_1
1612
+ value: 48.762
1613
+ - type: ndcg_at_10
1614
+ value: 37.203
1615
+ - type: ndcg_at_100
1616
+ value: 34.556
1617
+ - type: ndcg_at_1000
1618
+ value: 43.601
1619
+ - type: ndcg_at_3
1620
+ value: 43.004
1621
+ - type: ndcg_at_5
1622
+ value: 40.181
1623
+ - type: precision_at_1
1624
+ value: 50.15500000000001
1625
+ - type: precision_at_10
1626
+ value: 27.276
1627
+ - type: precision_at_100
1628
+ value: 8.981
1629
+ - type: precision_at_1000
1630
+ value: 2.228
1631
+ - type: precision_at_3
1632
+ value: 39.628
1633
+ - type: precision_at_5
1634
+ value: 33.808
1635
+ - type: recall_at_1
1636
+ value: 6.232
1637
+ - type: recall_at_10
1638
+ value: 18.137
1639
+ - type: recall_at_100
1640
+ value: 36.101
1641
+ - type: recall_at_1000
1642
+ value: 68.733
1643
+ - type: recall_at_3
1644
+ value: 10.978
1645
+ - type: recall_at_5
1646
+ value: 13.718
1647
+ - task:
1648
+ type: Retrieval
1649
+ dataset:
1650
+ type: mteb/nq
1651
+ name: MTEB NQ
1652
+ config: default
1653
+ split: test
1654
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1655
+ metrics:
1656
+ - type: map_at_1
1657
+ value: 35.545
1658
+ - type: map_at_10
1659
+ value: 52.083
1660
+ - type: map_at_100
1661
+ value: 52.954
1662
+ - type: map_at_1000
1663
+ value: 52.96999999999999
1664
+ - type: map_at_3
1665
+ value: 47.508
1666
+ - type: map_at_5
1667
+ value: 50.265
1668
+ - type: mrr_at_1
1669
+ value: 40.122
1670
+ - type: mrr_at_10
1671
+ value: 54.567
1672
+ - type: mrr_at_100
1673
+ value: 55.19199999999999
1674
+ - type: mrr_at_1000
1675
+ value: 55.204
1676
+ - type: mrr_at_3
1677
+ value: 51.043000000000006
1678
+ - type: mrr_at_5
1679
+ value: 53.233
1680
+ - type: ndcg_at_1
1681
+ value: 40.122
1682
+ - type: ndcg_at_10
1683
+ value: 60.012
1684
+ - type: ndcg_at_100
1685
+ value: 63.562
1686
+ - type: ndcg_at_1000
1687
+ value: 63.94
1688
+ - type: ndcg_at_3
1689
+ value: 51.681
1690
+ - type: ndcg_at_5
1691
+ value: 56.154
1692
+ - type: precision_at_1
1693
+ value: 40.122
1694
+ - type: precision_at_10
1695
+ value: 9.774
1696
+ - type: precision_at_100
1697
+ value: 1.176
1698
+ - type: precision_at_1000
1699
+ value: 0.121
1700
+ - type: precision_at_3
1701
+ value: 23.426
1702
+ - type: precision_at_5
1703
+ value: 16.686
1704
+ - type: recall_at_1
1705
+ value: 35.545
1706
+ - type: recall_at_10
1707
+ value: 81.557
1708
+ - type: recall_at_100
1709
+ value: 96.729
1710
+ - type: recall_at_1000
1711
+ value: 99.541
1712
+ - type: recall_at_3
1713
+ value: 60.185
1714
+ - type: recall_at_5
1715
+ value: 70.411
1716
+ - task:
1717
+ type: Retrieval
1718
+ dataset:
1719
+ type: mteb/quora
1720
+ name: MTEB QuoraRetrieval
1721
+ config: default
1722
+ split: test
1723
+ revision: None
1724
+ metrics:
1725
+ - type: map_at_1
1726
+ value: 68.908
1727
+ - type: map_at_10
1728
+ value: 83.19
1729
+ - type: map_at_100
1730
+ value: 83.842
1731
+ - type: map_at_1000
1732
+ value: 83.858
1733
+ - type: map_at_3
1734
+ value: 80.167
1735
+ - type: map_at_5
1736
+ value: 82.053
1737
+ - type: mrr_at_1
1738
+ value: 79.46
1739
+ - type: mrr_at_10
1740
+ value: 86.256
1741
+ - type: mrr_at_100
1742
+ value: 86.37
1743
+ - type: mrr_at_1000
1744
+ value: 86.371
1745
+ - type: mrr_at_3
1746
+ value: 85.177
1747
+ - type: mrr_at_5
1748
+ value: 85.908
1749
+ - type: ndcg_at_1
1750
+ value: 79.5
1751
+ - type: ndcg_at_10
1752
+ value: 87.244
1753
+ - type: ndcg_at_100
1754
+ value: 88.532
1755
+ - type: ndcg_at_1000
1756
+ value: 88.626
1757
+ - type: ndcg_at_3
1758
+ value: 84.161
1759
+ - type: ndcg_at_5
1760
+ value: 85.835
1761
+ - type: precision_at_1
1762
+ value: 79.5
1763
+ - type: precision_at_10
1764
+ value: 13.339
1765
+ - type: precision_at_100
1766
+ value: 1.53
1767
+ - type: precision_at_1000
1768
+ value: 0.157
1769
+ - type: precision_at_3
1770
+ value: 36.97
1771
+ - type: precision_at_5
1772
+ value: 24.384
1773
+ - type: recall_at_1
1774
+ value: 68.908
1775
+ - type: recall_at_10
1776
+ value: 95.179
1777
+ - type: recall_at_100
1778
+ value: 99.579
1779
+ - type: recall_at_1000
1780
+ value: 99.964
1781
+ - type: recall_at_3
1782
+ value: 86.424
1783
+ - type: recall_at_5
1784
+ value: 91.065
1785
+ - task:
1786
+ type: Clustering
1787
+ dataset:
1788
+ type: mteb/reddit-clustering
1789
+ name: MTEB RedditClustering
1790
+ config: default
1791
+ split: test
1792
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1793
+ metrics:
1794
+ - type: v_measure
1795
+ value: 65.17897847862794
1796
+ - task:
1797
+ type: Clustering
1798
+ dataset:
1799
+ type: mteb/reddit-clustering-p2p
1800
+ name: MTEB RedditClusteringP2P
1801
+ config: default
1802
+ split: test
1803
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1804
+ metrics:
1805
+ - type: v_measure
1806
+ value: 66.22194961632586
1807
+ - task:
1808
+ type: Retrieval
1809
+ dataset:
1810
+ type: mteb/scidocs
1811
+ name: MTEB SCIDOCS
1812
+ config: default
1813
+ split: test
1814
+ revision: None
1815
+ metrics:
1816
+ - type: map_at_1
1817
+ value: 5.668
1818
+ - type: map_at_10
1819
+ value: 13.921
1820
+ - type: map_at_100
1821
+ value: 16.391
1822
+ - type: map_at_1000
1823
+ value: 16.749
1824
+ - type: map_at_3
1825
+ value: 10.001999999999999
1826
+ - type: map_at_5
1827
+ value: 11.974
1828
+ - type: mrr_at_1
1829
+ value: 27.800000000000004
1830
+ - type: mrr_at_10
1831
+ value: 39.290000000000006
1832
+ - type: mrr_at_100
1833
+ value: 40.313
1834
+ - type: mrr_at_1000
1835
+ value: 40.355999999999995
1836
+ - type: mrr_at_3
1837
+ value: 35.667
1838
+ - type: mrr_at_5
1839
+ value: 37.742
1840
+ - type: ndcg_at_1
1841
+ value: 27.800000000000004
1842
+ - type: ndcg_at_10
1843
+ value: 23.172
1844
+ - type: ndcg_at_100
1845
+ value: 32.307
1846
+ - type: ndcg_at_1000
1847
+ value: 38.048
1848
+ - type: ndcg_at_3
1849
+ value: 22.043
1850
+ - type: ndcg_at_5
1851
+ value: 19.287000000000003
1852
+ - type: precision_at_1
1853
+ value: 27.800000000000004
1854
+ - type: precision_at_10
1855
+ value: 11.95
1856
+ - type: precision_at_100
1857
+ value: 2.5260000000000002
1858
+ - type: precision_at_1000
1859
+ value: 0.38999999999999996
1860
+ - type: precision_at_3
1861
+ value: 20.433
1862
+ - type: precision_at_5
1863
+ value: 16.84
1864
+ - type: recall_at_1
1865
+ value: 5.668
1866
+ - type: recall_at_10
1867
+ value: 24.22
1868
+ - type: recall_at_100
1869
+ value: 51.217
1870
+ - type: recall_at_1000
1871
+ value: 79.10000000000001
1872
+ - type: recall_at_3
1873
+ value: 12.443
1874
+ - type: recall_at_5
1875
+ value: 17.068
1876
+ - task:
1877
+ type: STS
1878
+ dataset:
1879
+ type: mteb/sickr-sts
1880
+ name: MTEB SICK-R
1881
+ config: default
1882
+ split: test
1883
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1884
+ metrics:
1885
+ - type: cos_sim_pearson
1886
+ value: 82.83535239748218
1887
+ - type: cos_sim_spearman
1888
+ value: 73.98553311584509
1889
+ - type: euclidean_pearson
1890
+ value: 79.57336200069007
1891
+ - type: euclidean_spearman
1892
+ value: 73.98553926018461
1893
+ - type: manhattan_pearson
1894
+ value: 79.02277757114132
1895
+ - type: manhattan_spearman
1896
+ value: 73.52350678760683
1897
+ - task:
1898
+ type: STS
1899
+ dataset:
1900
+ type: mteb/sts12-sts
1901
+ name: MTEB STS12
1902
+ config: default
1903
+ split: test
1904
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1905
+ metrics:
1906
+ - type: cos_sim_pearson
1907
+ value: 81.99055838690317
1908
+ - type: cos_sim_spearman
1909
+ value: 72.05290668592296
1910
+ - type: euclidean_pearson
1911
+ value: 81.7130610313565
1912
+ - type: euclidean_spearman
1913
+ value: 72.0529066787229
1914
+ - type: manhattan_pearson
1915
+ value: 82.09213883730894
1916
+ - type: manhattan_spearman
1917
+ value: 72.5171577483134
1918
+ - task:
1919
+ type: STS
1920
+ dataset:
1921
+ type: mteb/sts13-sts
1922
+ name: MTEB STS13
1923
+ config: default
1924
+ split: test
1925
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1926
+ metrics:
1927
+ - type: cos_sim_pearson
1928
+ value: 84.4685161191763
1929
+ - type: cos_sim_spearman
1930
+ value: 84.4847436140129
1931
+ - type: euclidean_pearson
1932
+ value: 84.05016757016948
1933
+ - type: euclidean_spearman
1934
+ value: 84.48474353891532
1935
+ - type: manhattan_pearson
1936
+ value: 83.83064062713048
1937
+ - type: manhattan_spearman
1938
+ value: 84.30431591842805
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sts14-sts
1943
+ name: MTEB STS14
1944
+ config: default
1945
+ split: test
1946
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 83.00171021092486
1950
+ - type: cos_sim_spearman
1951
+ value: 77.91329577609622
1952
+ - type: euclidean_pearson
1953
+ value: 81.49758593915315
1954
+ - type: euclidean_spearman
1955
+ value: 77.91329577609622
1956
+ - type: manhattan_pearson
1957
+ value: 81.23255996803785
1958
+ - type: manhattan_spearman
1959
+ value: 77.80027024941825
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts15-sts
1964
+ name: MTEB STS15
1965
+ config: default
1966
+ split: test
1967
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 86.62608607472492
1971
+ - type: cos_sim_spearman
1972
+ value: 87.62293916855751
1973
+ - type: euclidean_pearson
1974
+ value: 87.04313886714989
1975
+ - type: euclidean_spearman
1976
+ value: 87.62293907119869
1977
+ - type: manhattan_pearson
1978
+ value: 86.97266321040769
1979
+ - type: manhattan_spearman
1980
+ value: 87.61807042381702
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts16-sts
1985
+ name: MTEB STS16
1986
+ config: default
1987
+ split: test
1988
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 80.8012095789289
1992
+ - type: cos_sim_spearman
1993
+ value: 81.91868918081325
1994
+ - type: euclidean_pearson
1995
+ value: 81.2267973811213
1996
+ - type: euclidean_spearman
1997
+ value: 81.91868918081325
1998
+ - type: manhattan_pearson
1999
+ value: 81.0173457901168
2000
+ - type: manhattan_spearman
2001
+ value: 81.79743115887055
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts17-crosslingual-sts
2006
+ name: MTEB STS17 (en-en)
2007
+ config: en-en
2008
+ split: test
2009
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 88.39698537303725
2013
+ - type: cos_sim_spearman
2014
+ value: 88.78668529808967
2015
+ - type: euclidean_pearson
2016
+ value: 88.78863351718252
2017
+ - type: euclidean_spearman
2018
+ value: 88.78668529808967
2019
+ - type: manhattan_pearson
2020
+ value: 88.41678215762478
2021
+ - type: manhattan_spearman
2022
+ value: 88.3827998418763
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts22-crosslingual-sts
2027
+ name: MTEB STS22 (en)
2028
+ config: en
2029
+ split: test
2030
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 68.49024974161408
2034
+ - type: cos_sim_spearman
2035
+ value: 69.19917146180619
2036
+ - type: euclidean_pearson
2037
+ value: 70.48882819806336
2038
+ - type: euclidean_spearman
2039
+ value: 69.19917146180619
2040
+ - type: manhattan_pearson
2041
+ value: 70.86827961779932
2042
+ - type: manhattan_spearman
2043
+ value: 69.38456983992613
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/stsbenchmark-sts
2048
+ name: MTEB STSBenchmark
2049
+ config: default
2050
+ split: test
2051
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 84.31376078795105
2055
+ - type: cos_sim_spearman
2056
+ value: 83.3985199217591
2057
+ - type: euclidean_pearson
2058
+ value: 84.06630133719332
2059
+ - type: euclidean_spearman
2060
+ value: 83.3985199217591
2061
+ - type: manhattan_pearson
2062
+ value: 83.7896654474364
2063
+ - type: manhattan_spearman
2064
+ value: 83.1885039212299
2065
+ - task:
2066
+ type: Reranking
2067
+ dataset:
2068
+ type: mteb/scidocs-reranking
2069
+ name: MTEB SciDocsRR
2070
+ config: default
2071
+ split: test
2072
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2073
+ metrics:
2074
+ - type: map
2075
+ value: 85.83161002188668
2076
+ - type: mrr
2077
+ value: 96.19253114351153
2078
+ - task:
2079
+ type: Retrieval
2080
+ dataset:
2081
+ type: mteb/scifact
2082
+ name: MTEB SciFact
2083
+ config: default
2084
+ split: test
2085
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2086
+ metrics:
2087
+ - type: map_at_1
2088
+ value: 48.132999999999996
2089
+ - type: map_at_10
2090
+ value: 58.541
2091
+ - type: map_at_100
2092
+ value: 59.34
2093
+ - type: map_at_1000
2094
+ value: 59.367999999999995
2095
+ - type: map_at_3
2096
+ value: 55.191
2097
+ - type: map_at_5
2098
+ value: 57.084
2099
+ - type: mrr_at_1
2100
+ value: 51.0
2101
+ - type: mrr_at_10
2102
+ value: 59.858
2103
+ - type: mrr_at_100
2104
+ value: 60.474000000000004
2105
+ - type: mrr_at_1000
2106
+ value: 60.501000000000005
2107
+ - type: mrr_at_3
2108
+ value: 57.111000000000004
2109
+ - type: mrr_at_5
2110
+ value: 58.694
2111
+ - type: ndcg_at_1
2112
+ value: 51.0
2113
+ - type: ndcg_at_10
2114
+ value: 63.817
2115
+ - type: ndcg_at_100
2116
+ value: 67.229
2117
+ - type: ndcg_at_1000
2118
+ value: 67.94
2119
+ - type: ndcg_at_3
2120
+ value: 57.896
2121
+ - type: ndcg_at_5
2122
+ value: 60.785999999999994
2123
+ - type: precision_at_1
2124
+ value: 51.0
2125
+ - type: precision_at_10
2126
+ value: 8.933
2127
+ - type: precision_at_100
2128
+ value: 1.0699999999999998
2129
+ - type: precision_at_1000
2130
+ value: 0.11299999999999999
2131
+ - type: precision_at_3
2132
+ value: 23.111
2133
+ - type: precision_at_5
2134
+ value: 15.733
2135
+ - type: recall_at_1
2136
+ value: 48.132999999999996
2137
+ - type: recall_at_10
2138
+ value: 78.922
2139
+ - type: recall_at_100
2140
+ value: 94.167
2141
+ - type: recall_at_1000
2142
+ value: 99.667
2143
+ - type: recall_at_3
2144
+ value: 62.806
2145
+ - type: recall_at_5
2146
+ value: 70.078
2147
+ - task:
2148
+ type: PairClassification
2149
+ dataset:
2150
+ type: mteb/sprintduplicatequestions-pairclassification
2151
+ name: MTEB SprintDuplicateQuestions
2152
+ config: default
2153
+ split: test
2154
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2155
+ metrics:
2156
+ - type: cos_sim_accuracy
2157
+ value: 99.88415841584158
2158
+ - type: cos_sim_ap
2159
+ value: 97.72557886493401
2160
+ - type: cos_sim_f1
2161
+ value: 94.1294530858003
2162
+ - type: cos_sim_precision
2163
+ value: 94.46122860020141
2164
+ - type: cos_sim_recall
2165
+ value: 93.8
2166
+ - type: dot_accuracy
2167
+ value: 99.88415841584158
2168
+ - type: dot_ap
2169
+ value: 97.72557439066108
2170
+ - type: dot_f1
2171
+ value: 94.1294530858003
2172
+ - type: dot_precision
2173
+ value: 94.46122860020141
2174
+ - type: dot_recall
2175
+ value: 93.8
2176
+ - type: euclidean_accuracy
2177
+ value: 99.88415841584158
2178
+ - type: euclidean_ap
2179
+ value: 97.72557439066108
2180
+ - type: euclidean_f1
2181
+ value: 94.1294530858003
2182
+ - type: euclidean_precision
2183
+ value: 94.46122860020141
2184
+ - type: euclidean_recall
2185
+ value: 93.8
2186
+ - type: manhattan_accuracy
2187
+ value: 99.88514851485148
2188
+ - type: manhattan_ap
2189
+ value: 97.73324334051959
2190
+ - type: manhattan_f1
2191
+ value: 94.1825476429288
2192
+ - type: manhattan_precision
2193
+ value: 94.46680080482898
2194
+ - type: manhattan_recall
2195
+ value: 93.89999999999999
2196
+ - type: max_accuracy
2197
+ value: 99.88514851485148
2198
+ - type: max_ap
2199
+ value: 97.73324334051959
2200
+ - type: max_f1
2201
+ value: 94.1825476429288
2202
+ - task:
2203
+ type: Clustering
2204
+ dataset:
2205
+ type: mteb/stackexchange-clustering
2206
+ name: MTEB StackExchangeClustering
2207
+ config: default
2208
+ split: test
2209
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2210
+ metrics:
2211
+ - type: v_measure
2212
+ value: 72.8168026381278
2213
+ - task:
2214
+ type: Clustering
2215
+ dataset:
2216
+ type: mteb/stackexchange-clustering-p2p
2217
+ name: MTEB StackExchangeClusteringP2P
2218
+ config: default
2219
+ split: test
2220
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2221
+ metrics:
2222
+ - type: v_measure
2223
+ value: 44.30948635130784
2224
+ - task:
2225
+ type: Reranking
2226
+ dataset:
2227
+ type: mteb/stackoverflowdupquestions-reranking
2228
+ name: MTEB StackOverflowDupQuestions
2229
+ config: default
2230
+ split: test
2231
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2232
+ metrics:
2233
+ - type: map
2234
+ value: 54.11268548719803
2235
+ - type: mrr
2236
+ value: 55.08079747050335
2237
+ - task:
2238
+ type: Summarization
2239
+ dataset:
2240
+ type: mteb/summeval
2241
+ name: MTEB SummEval
2242
+ config: default
2243
+ split: test
2244
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2245
+ metrics:
2246
+ - type: cos_sim_pearson
2247
+ value: 30.82885852096243
2248
+ - type: cos_sim_spearman
2249
+ value: 30.800770979226076
2250
+ - type: dot_pearson
2251
+ value: 30.82885608827704
2252
+ - type: dot_spearman
2253
+ value: 30.800770979226076
2254
+ - task:
2255
+ type: Retrieval
2256
+ dataset:
2257
+ type: mteb/trec-covid
2258
+ name: MTEB TRECCOVID
2259
+ config: default
2260
+ split: test
2261
+ revision: None
2262
+ metrics:
2263
+ - type: map_at_1
2264
+ value: 0.20400000000000001
2265
+ - type: map_at_10
2266
+ value: 1.27
2267
+ - type: map_at_100
2268
+ value: 7.993
2269
+ - type: map_at_1000
2270
+ value: 20.934
2271
+ - type: map_at_3
2272
+ value: 0.469
2273
+ - type: map_at_5
2274
+ value: 0.716
2275
+ - type: mrr_at_1
2276
+ value: 76.0
2277
+ - type: mrr_at_10
2278
+ value: 84.967
2279
+ - type: mrr_at_100
2280
+ value: 84.967
2281
+ - type: mrr_at_1000
2282
+ value: 84.967
2283
+ - type: mrr_at_3
2284
+ value: 83.667
2285
+ - type: mrr_at_5
2286
+ value: 84.967
2287
+ - type: ndcg_at_1
2288
+ value: 69.0
2289
+ - type: ndcg_at_10
2290
+ value: 59.243
2291
+ - type: ndcg_at_100
2292
+ value: 48.784
2293
+ - type: ndcg_at_1000
2294
+ value: 46.966
2295
+ - type: ndcg_at_3
2296
+ value: 64.14
2297
+ - type: ndcg_at_5
2298
+ value: 61.60600000000001
2299
+ - type: precision_at_1
2300
+ value: 76.0
2301
+ - type: precision_at_10
2302
+ value: 62.6
2303
+ - type: precision_at_100
2304
+ value: 50.18
2305
+ - type: precision_at_1000
2306
+ value: 21.026
2307
+ - type: precision_at_3
2308
+ value: 68.667
2309
+ - type: precision_at_5
2310
+ value: 66.0
2311
+ - type: recall_at_1
2312
+ value: 0.20400000000000001
2313
+ - type: recall_at_10
2314
+ value: 1.582
2315
+ - type: recall_at_100
2316
+ value: 11.988
2317
+ - type: recall_at_1000
2318
+ value: 44.994
2319
+ - type: recall_at_3
2320
+ value: 0.515
2321
+ - type: recall_at_5
2322
+ value: 0.844
2323
+ - task:
2324
+ type: Retrieval
2325
+ dataset:
2326
+ type: mteb/touche2020
2327
+ name: MTEB Touche2020
2328
+ config: default
2329
+ split: test
2330
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2331
+ metrics:
2332
+ - type: map_at_1
2333
+ value: 3.3009999999999997
2334
+ - type: map_at_10
2335
+ value: 11.566
2336
+ - type: map_at_100
2337
+ value: 17.645
2338
+ - type: map_at_1000
2339
+ value: 19.206
2340
+ - type: map_at_3
2341
+ value: 6.986000000000001
2342
+ - type: map_at_5
2343
+ value: 8.716
2344
+ - type: mrr_at_1
2345
+ value: 42.857
2346
+ - type: mrr_at_10
2347
+ value: 58.287
2348
+ - type: mrr_at_100
2349
+ value: 59.111000000000004
2350
+ - type: mrr_at_1000
2351
+ value: 59.111000000000004
2352
+ - type: mrr_at_3
2353
+ value: 55.102
2354
+ - type: mrr_at_5
2355
+ value: 57.449
2356
+ - type: ndcg_at_1
2357
+ value: 39.796
2358
+ - type: ndcg_at_10
2359
+ value: 29.059
2360
+ - type: ndcg_at_100
2361
+ value: 40.629
2362
+ - type: ndcg_at_1000
2363
+ value: 51.446000000000005
2364
+ - type: ndcg_at_3
2365
+ value: 36.254999999999995
2366
+ - type: ndcg_at_5
2367
+ value: 32.216
2368
+ - type: precision_at_1
2369
+ value: 42.857
2370
+ - type: precision_at_10
2371
+ value: 23.469
2372
+ - type: precision_at_100
2373
+ value: 8.041
2374
+ - type: precision_at_1000
2375
+ value: 1.551
2376
+ - type: precision_at_3
2377
+ value: 36.735
2378
+ - type: precision_at_5
2379
+ value: 30.203999999999997
2380
+ - type: recall_at_1
2381
+ value: 3.3009999999999997
2382
+ - type: recall_at_10
2383
+ value: 17.267
2384
+ - type: recall_at_100
2385
+ value: 49.36
2386
+ - type: recall_at_1000
2387
+ value: 83.673
2388
+ - type: recall_at_3
2389
+ value: 8.049000000000001
2390
+ - type: recall_at_5
2391
+ value: 11.379999999999999
2392
+ - task:
2393
+ type: Classification
2394
+ dataset:
2395
+ type: mteb/toxic_conversations_50k
2396
+ name: MTEB ToxicConversationsClassification
2397
+ config: default
2398
+ split: test
2399
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2400
+ metrics:
2401
+ - type: accuracy
2402
+ value: 88.7576
2403
+ - type: ap
2404
+ value: 35.52110634325751
2405
+ - type: f1
2406
+ value: 74.14476947482417
2407
+ - task:
2408
+ type: Classification
2409
+ dataset:
2410
+ type: mteb/tweet_sentiment_extraction
2411
+ name: MTEB TweetSentimentExtractionClassification
2412
+ config: default
2413
+ split: test
2414
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2415
+ metrics:
2416
+ - type: accuracy
2417
+ value: 73.52009054895304
2418
+ - type: f1
2419
+ value: 73.81407409876577
2420
+ - task:
2421
+ type: Clustering
2422
+ dataset:
2423
+ type: mteb/twentynewsgroups-clustering
2424
+ name: MTEB TwentyNewsgroupsClustering
2425
+ config: default
2426
+ split: test
2427
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2428
+ metrics:
2429
+ - type: v_measure
2430
+ value: 54.35358706465052
2431
+ - task:
2432
+ type: PairClassification
2433
+ dataset:
2434
+ type: mteb/twittersemeval2015-pairclassification
2435
+ name: MTEB TwitterSemEval2015
2436
+ config: default
2437
+ split: test
2438
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2439
+ metrics:
2440
+ - type: cos_sim_accuracy
2441
+ value: 83.65619598259522
2442
+ - type: cos_sim_ap
2443
+ value: 65.824087818991
2444
+ - type: cos_sim_f1
2445
+ value: 61.952620244077536
2446
+ - type: cos_sim_precision
2447
+ value: 56.676882661996494
2448
+ - type: cos_sim_recall
2449
+ value: 68.311345646438
2450
+ - type: dot_accuracy
2451
+ value: 83.65619598259522
2452
+ - type: dot_ap
2453
+ value: 65.82406256999921
2454
+ - type: dot_f1
2455
+ value: 61.952620244077536
2456
+ - type: dot_precision
2457
+ value: 56.676882661996494
2458
+ - type: dot_recall
2459
+ value: 68.311345646438
2460
+ - type: euclidean_accuracy
2461
+ value: 83.65619598259522
2462
+ - type: euclidean_ap
2463
+ value: 65.82409143427542
2464
+ - type: euclidean_f1
2465
+ value: 61.952620244077536
2466
+ - type: euclidean_precision
2467
+ value: 56.676882661996494
2468
+ - type: euclidean_recall
2469
+ value: 68.311345646438
2470
+ - type: manhattan_accuracy
2471
+ value: 83.4296954163438
2472
+ - type: manhattan_ap
2473
+ value: 65.20662449614932
2474
+ - type: manhattan_f1
2475
+ value: 61.352885525070946
2476
+ - type: manhattan_precision
2477
+ value: 55.59365623660523
2478
+ - type: manhattan_recall
2479
+ value: 68.44327176781002
2480
+ - type: max_accuracy
2481
+ value: 83.65619598259522
2482
+ - type: max_ap
2483
+ value: 65.82409143427542
2484
+ - type: max_f1
2485
+ value: 61.952620244077536
2486
+ - task:
2487
+ type: PairClassification
2488
+ dataset:
2489
+ type: mteb/twitterurlcorpus-pairclassification
2490
+ name: MTEB TwitterURLCorpus
2491
+ config: default
2492
+ split: test
2493
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2494
+ metrics:
2495
+ - type: cos_sim_accuracy
2496
+ value: 87.90119144642372
2497
+ - type: cos_sim_ap
2498
+ value: 84.04753852793387
2499
+ - type: cos_sim_f1
2500
+ value: 76.27737226277372
2501
+ - type: cos_sim_precision
2502
+ value: 73.86757068667052
2503
+ - type: cos_sim_recall
2504
+ value: 78.84970742223591
2505
+ - type: dot_accuracy
2506
+ value: 87.90119144642372
2507
+ - type: dot_ap
2508
+ value: 84.04753668117337
2509
+ - type: dot_f1
2510
+ value: 76.27737226277372
2511
+ - type: dot_precision
2512
+ value: 73.86757068667052
2513
+ - type: dot_recall
2514
+ value: 78.84970742223591
2515
+ - type: euclidean_accuracy
2516
+ value: 87.90119144642372
2517
+ - type: euclidean_ap
2518
+ value: 84.04754553468206
2519
+ - type: euclidean_f1
2520
+ value: 76.27737226277372
2521
+ - type: euclidean_precision
2522
+ value: 73.86757068667052
2523
+ - type: euclidean_recall
2524
+ value: 78.84970742223591
2525
+ - type: manhattan_accuracy
2526
+ value: 87.87014398261343
2527
+ - type: manhattan_ap
2528
+ value: 84.05164646221583
2529
+ - type: manhattan_f1
2530
+ value: 76.31392706820128
2531
+ - type: manhattan_precision
2532
+ value: 73.91586694566708
2533
+ - type: manhattan_recall
2534
+ value: 78.87280566676932
2535
+ - type: max_accuracy
2536
+ value: 87.90119144642372
2537
+ - type: max_ap
2538
+ value: 84.05164646221583
2539
+ - type: max_f1
2540
+ value: 76.31392706820128
2541
+ - task:
2542
+ type: STS
2543
+ dataset:
2544
+ type: C-MTEB/AFQMC
2545
+ name: MTEB AFQMC
2546
+ config: default
2547
+ split: validation
2548
+ revision: b44c3b011063adb25877c13823db83bb193913c4
2549
+ metrics:
2550
+ - type: cos_sim_pearson
2551
+ value: 52.3123511272669
2552
+ - type: cos_sim_spearman
2553
+ value: 55.73207493107254
2554
+ - type: euclidean_pearson
2555
+ value: 53.95847274621819
2556
+ - type: euclidean_spearman
2557
+ value: 55.73207493107254
2558
+ - type: manhattan_pearson
2559
+ value: 53.720688490931124
2560
+ - type: manhattan_spearman
2561
+ value: 55.453911938689
2562
+ - task:
2563
+ type: STS
2564
+ dataset:
2565
+ type: C-MTEB/ATEC
2566
+ name: MTEB ATEC
2567
+ config: default
2568
+ split: test
2569
+ revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
2570
+ metrics:
2571
+ - type: cos_sim_pearson
2572
+ value: 50.787428883419864
2573
+ - type: cos_sim_spearman
2574
+ value: 53.97343607668934
2575
+ - type: euclidean_pearson
2576
+ value: 55.12379889727461
2577
+ - type: euclidean_spearman
2578
+ value: 53.97343945403084
2579
+ - type: manhattan_pearson
2580
+ value: 54.95369694130932
2581
+ - type: manhattan_spearman
2582
+ value: 53.74165246349166
2583
+ - task:
2584
+ type: Classification
2585
+ dataset:
2586
+ type: mteb/amazon_reviews_multi
2587
+ name: MTEB AmazonReviewsClassification (zh)
2588
+ config: zh
2589
+ split: test
2590
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
2591
+ metrics:
2592
+ - type: accuracy
2593
+ value: 53.49
2594
+ - type: f1
2595
+ value: 51.576550662258434
2596
+ - task:
2597
+ type: STS
2598
+ dataset:
2599
+ type: C-MTEB/BQ
2600
+ name: MTEB BQ
2601
+ config: default
2602
+ split: test
2603
+ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
2604
+ metrics:
2605
+ - type: cos_sim_pearson
2606
+ value: 63.78770644319529
2607
+ - type: cos_sim_spearman
2608
+ value: 65.08813140587463
2609
+ - type: euclidean_pearson
2610
+ value: 63.92948559310832
2611
+ - type: euclidean_spearman
2612
+ value: 65.08813486997627
2613
+ - type: manhattan_pearson
2614
+ value: 63.55967028084246
2615
+ - type: manhattan_spearman
2616
+ value: 64.69692694499825
2617
+ - task:
2618
+ type: Clustering
2619
+ dataset:
2620
+ type: C-MTEB/CLSClusteringP2P
2621
+ name: MTEB CLSClusteringP2P
2622
+ config: default
2623
+ split: test
2624
+ revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
2625
+ metrics:
2626
+ - type: v_measure
2627
+ value: 44.23533333311907
2628
+ - task:
2629
+ type: Clustering
2630
+ dataset:
2631
+ type: C-MTEB/CLSClusteringS2S
2632
+ name: MTEB CLSClusteringS2S
2633
+ config: default
2634
+ split: test
2635
+ revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
2636
+ metrics:
2637
+ - type: v_measure
2638
+ value: 43.01114481307774
2639
+ - task:
2640
+ type: Reranking
2641
+ dataset:
2642
+ type: C-MTEB/CMedQAv1-reranking
2643
+ name: MTEB CMedQAv1
2644
+ config: default
2645
+ split: test
2646
+ revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
2647
+ metrics:
2648
+ - type: map
2649
+ value: 86.4349853821696
2650
+ - type: mrr
2651
+ value: 88.80150793650795
2652
+ - task:
2653
+ type: Reranking
2654
+ dataset:
2655
+ type: C-MTEB/CMedQAv2-reranking
2656
+ name: MTEB CMedQAv2
2657
+ config: default
2658
+ split: test
2659
+ revision: 23d186750531a14a0357ca22cd92d712fd512ea0
2660
+ metrics:
2661
+ - type: map
2662
+ value: 87.56417400982208
2663
+ - type: mrr
2664
+ value: 89.85813492063491
2665
+ - task:
2666
+ type: Retrieval
2667
+ dataset:
2668
+ type: C-MTEB/CmedqaRetrieval
2669
+ name: MTEB CmedqaRetrieval
2670
+ config: default
2671
+ split: dev
2672
+ revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
2673
+ metrics:
2674
+ - type: map_at_1
2675
+ value: 24.871
2676
+ - type: map_at_10
2677
+ value: 37.208999999999996
2678
+ - type: map_at_100
2679
+ value: 38.993
2680
+ - type: map_at_1000
2681
+ value: 39.122
2682
+ - type: map_at_3
2683
+ value: 33.2
2684
+ - type: map_at_5
2685
+ value: 35.33
2686
+ - type: mrr_at_1
2687
+ value: 37.884
2688
+ - type: mrr_at_10
2689
+ value: 46.189
2690
+ - type: mrr_at_100
2691
+ value: 47.147
2692
+ - type: mrr_at_1000
2693
+ value: 47.195
2694
+ - type: mrr_at_3
2695
+ value: 43.728
2696
+ - type: mrr_at_5
2697
+ value: 44.994
2698
+ - type: ndcg_at_1
2699
+ value: 37.884
2700
+ - type: ndcg_at_10
2701
+ value: 43.878
2702
+ - type: ndcg_at_100
2703
+ value: 51.002
2704
+ - type: ndcg_at_1000
2705
+ value: 53.161
2706
+ - type: ndcg_at_3
2707
+ value: 38.729
2708
+ - type: ndcg_at_5
2709
+ value: 40.628
2710
+ - type: precision_at_1
2711
+ value: 37.884
2712
+ - type: precision_at_10
2713
+ value: 9.75
2714
+ - type: precision_at_100
2715
+ value: 1.558
2716
+ - type: precision_at_1000
2717
+ value: 0.183
2718
+ - type: precision_at_3
2719
+ value: 21.964
2720
+ - type: precision_at_5
2721
+ value: 15.719
2722
+ - type: recall_at_1
2723
+ value: 24.871
2724
+ - type: recall_at_10
2725
+ value: 54.615
2726
+ - type: recall_at_100
2727
+ value: 84.276
2728
+ - type: recall_at_1000
2729
+ value: 98.578
2730
+ - type: recall_at_3
2731
+ value: 38.936
2732
+ - type: recall_at_5
2733
+ value: 45.061
2734
+ - task:
2735
+ type: PairClassification
2736
+ dataset:
2737
+ type: C-MTEB/CMNLI
2738
+ name: MTEB Cmnli
2739
+ config: default
2740
+ split: validation
2741
+ revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
2742
+ metrics:
2743
+ - type: cos_sim_accuracy
2744
+ value: 76.12748045700542
2745
+ - type: cos_sim_ap
2746
+ value: 84.47948419710998
2747
+ - type: cos_sim_f1
2748
+ value: 77.88108108108108
2749
+ - type: cos_sim_precision
2750
+ value: 72.43112809169516
2751
+ - type: cos_sim_recall
2752
+ value: 84.21790974982464
2753
+ - type: dot_accuracy
2754
+ value: 76.12748045700542
2755
+ - type: dot_ap
2756
+ value: 84.4933237839786
2757
+ - type: dot_f1
2758
+ value: 77.88108108108108
2759
+ - type: dot_precision
2760
+ value: 72.43112809169516
2761
+ - type: dot_recall
2762
+ value: 84.21790974982464
2763
+ - type: euclidean_accuracy
2764
+ value: 76.12748045700542
2765
+ - type: euclidean_ap
2766
+ value: 84.47947997540409
2767
+ - type: euclidean_f1
2768
+ value: 77.88108108108108
2769
+ - type: euclidean_precision
2770
+ value: 72.43112809169516
2771
+ - type: euclidean_recall
2772
+ value: 84.21790974982464
2773
+ - type: manhattan_accuracy
2774
+ value: 75.40589296452195
2775
+ - type: manhattan_ap
2776
+ value: 83.74383956930585
2777
+ - type: manhattan_f1
2778
+ value: 77.0983342289092
2779
+ - type: manhattan_precision
2780
+ value: 71.34049323786795
2781
+ - type: manhattan_recall
2782
+ value: 83.86719663315408
2783
+ - type: max_accuracy
2784
+ value: 76.12748045700542
2785
+ - type: max_ap
2786
+ value: 84.4933237839786
2787
+ - type: max_f1
2788
+ value: 77.88108108108108
2789
+ - task:
2790
+ type: Retrieval
2791
+ dataset:
2792
+ type: C-MTEB/CovidRetrieval
2793
+ name: MTEB CovidRetrieval
2794
+ config: default
2795
+ split: dev
2796
+ revision: 1271c7809071a13532e05f25fb53511ffce77117
2797
+ metrics:
2798
+ - type: map_at_1
2799
+ value: 66.781
2800
+ - type: map_at_10
2801
+ value: 74.539
2802
+ - type: map_at_100
2803
+ value: 74.914
2804
+ - type: map_at_1000
2805
+ value: 74.921
2806
+ - type: map_at_3
2807
+ value: 72.734
2808
+ - type: map_at_5
2809
+ value: 73.788
2810
+ - type: mrr_at_1
2811
+ value: 66.913
2812
+ - type: mrr_at_10
2813
+ value: 74.543
2814
+ - type: mrr_at_100
2815
+ value: 74.914
2816
+ - type: mrr_at_1000
2817
+ value: 74.921
2818
+ - type: mrr_at_3
2819
+ value: 72.831
2820
+ - type: mrr_at_5
2821
+ value: 73.76899999999999
2822
+ - type: ndcg_at_1
2823
+ value: 67.018
2824
+ - type: ndcg_at_10
2825
+ value: 78.34299999999999
2826
+ - type: ndcg_at_100
2827
+ value: 80.138
2828
+ - type: ndcg_at_1000
2829
+ value: 80.322
2830
+ - type: ndcg_at_3
2831
+ value: 74.667
2832
+ - type: ndcg_at_5
2833
+ value: 76.518
2834
+ - type: precision_at_1
2835
+ value: 67.018
2836
+ - type: precision_at_10
2837
+ value: 9.115
2838
+ - type: precision_at_100
2839
+ value: 0.996
2840
+ - type: precision_at_1000
2841
+ value: 0.101
2842
+ - type: precision_at_3
2843
+ value: 26.906000000000002
2844
+ - type: precision_at_5
2845
+ value: 17.092
2846
+ - type: recall_at_1
2847
+ value: 66.781
2848
+ - type: recall_at_10
2849
+ value: 90.253
2850
+ - type: recall_at_100
2851
+ value: 98.52499999999999
2852
+ - type: recall_at_1000
2853
+ value: 100.0
2854
+ - type: recall_at_3
2855
+ value: 80.05799999999999
2856
+ - type: recall_at_5
2857
+ value: 84.615
2858
+ - task:
2859
+ type: Retrieval
2860
+ dataset:
2861
+ type: C-MTEB/DuRetrieval
2862
+ name: MTEB DuRetrieval
2863
+ config: default
2864
+ split: dev
2865
+ revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
2866
+ metrics:
2867
+ - type: map_at_1
2868
+ value: 24.528
2869
+ - type: map_at_10
2870
+ value: 76.304
2871
+ - type: map_at_100
2872
+ value: 79.327
2873
+ - type: map_at_1000
2874
+ value: 79.373
2875
+ - type: map_at_3
2876
+ value: 52.035
2877
+ - type: map_at_5
2878
+ value: 66.074
2879
+ - type: mrr_at_1
2880
+ value: 86.05000000000001
2881
+ - type: mrr_at_10
2882
+ value: 90.74
2883
+ - type: mrr_at_100
2884
+ value: 90.809
2885
+ - type: mrr_at_1000
2886
+ value: 90.81099999999999
2887
+ - type: mrr_at_3
2888
+ value: 90.30799999999999
2889
+ - type: mrr_at_5
2890
+ value: 90.601
2891
+ - type: ndcg_at_1
2892
+ value: 86.05000000000001
2893
+ - type: ndcg_at_10
2894
+ value: 84.518
2895
+ - type: ndcg_at_100
2896
+ value: 87.779
2897
+ - type: ndcg_at_1000
2898
+ value: 88.184
2899
+ - type: ndcg_at_3
2900
+ value: 82.339
2901
+ - type: ndcg_at_5
2902
+ value: 81.613
2903
+ - type: precision_at_1
2904
+ value: 86.05000000000001
2905
+ - type: precision_at_10
2906
+ value: 40.945
2907
+ - type: precision_at_100
2908
+ value: 4.787
2909
+ - type: precision_at_1000
2910
+ value: 0.48900000000000005
2911
+ - type: precision_at_3
2912
+ value: 74.117
2913
+ - type: precision_at_5
2914
+ value: 62.86000000000001
2915
+ - type: recall_at_1
2916
+ value: 24.528
2917
+ - type: recall_at_10
2918
+ value: 86.78
2919
+ - type: recall_at_100
2920
+ value: 97.198
2921
+ - type: recall_at_1000
2922
+ value: 99.227
2923
+ - type: recall_at_3
2924
+ value: 54.94799999999999
2925
+ - type: recall_at_5
2926
+ value: 72.053
2927
+ - task:
2928
+ type: Retrieval
2929
+ dataset:
2930
+ type: C-MTEB/EcomRetrieval
2931
+ name: MTEB EcomRetrieval
2932
+ config: default
2933
+ split: dev
2934
+ revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
2935
+ metrics:
2936
+ - type: map_at_1
2937
+ value: 52.1
2938
+ - type: map_at_10
2939
+ value: 62.502
2940
+ - type: map_at_100
2941
+ value: 63.026
2942
+ - type: map_at_1000
2943
+ value: 63.04
2944
+ - type: map_at_3
2945
+ value: 59.782999999999994
2946
+ - type: map_at_5
2947
+ value: 61.443000000000005
2948
+ - type: mrr_at_1
2949
+ value: 52.1
2950
+ - type: mrr_at_10
2951
+ value: 62.502
2952
+ - type: mrr_at_100
2953
+ value: 63.026
2954
+ - type: mrr_at_1000
2955
+ value: 63.04
2956
+ - type: mrr_at_3
2957
+ value: 59.782999999999994
2958
+ - type: mrr_at_5
2959
+ value: 61.443000000000005
2960
+ - type: ndcg_at_1
2961
+ value: 52.1
2962
+ - type: ndcg_at_10
2963
+ value: 67.75999999999999
2964
+ - type: ndcg_at_100
2965
+ value: 70.072
2966
+ - type: ndcg_at_1000
2967
+ value: 70.441
2968
+ - type: ndcg_at_3
2969
+ value: 62.28
2970
+ - type: ndcg_at_5
2971
+ value: 65.25800000000001
2972
+ - type: precision_at_1
2973
+ value: 52.1
2974
+ - type: precision_at_10
2975
+ value: 8.43
2976
+ - type: precision_at_100
2977
+ value: 0.946
2978
+ - type: precision_at_1000
2979
+ value: 0.098
2980
+ - type: precision_at_3
2981
+ value: 23.166999999999998
2982
+ - type: precision_at_5
2983
+ value: 15.340000000000002
2984
+ - type: recall_at_1
2985
+ value: 52.1
2986
+ - type: recall_at_10
2987
+ value: 84.3
2988
+ - type: recall_at_100
2989
+ value: 94.6
2990
+ - type: recall_at_1000
2991
+ value: 97.5
2992
+ - type: recall_at_3
2993
+ value: 69.5
2994
+ - type: recall_at_5
2995
+ value: 76.7
2996
+ - task:
2997
+ type: Classification
2998
+ dataset:
2999
+ type: C-MTEB/IFlyTek-classification
3000
+ name: MTEB IFlyTek
3001
+ config: default
3002
+ split: validation
3003
+ revision: 421605374b29664c5fc098418fe20ada9bd55f8a
3004
+ metrics:
3005
+ - type: accuracy
3006
+ value: 52.04309349749903
3007
+ - type: f1
3008
+ value: 39.91893257315586
3009
+ - task:
3010
+ type: Classification
3011
+ dataset:
3012
+ type: C-MTEB/JDReview-classification
3013
+ name: MTEB JDReview
3014
+ config: default
3015
+ split: test
3016
+ revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
3017
+ metrics:
3018
+ - type: accuracy
3019
+ value: 85.60975609756099
3020
+ - type: ap
3021
+ value: 54.30148799475452
3022
+ - type: f1
3023
+ value: 80.55899583002706
3024
+ - task:
3025
+ type: STS
3026
+ dataset:
3027
+ type: C-MTEB/LCQMC
3028
+ name: MTEB LCQMC
3029
+ config: default
3030
+ split: test
3031
+ revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
3032
+ metrics:
3033
+ - type: cos_sim_pearson
3034
+ value: 66.80471387011771
3035
+ - type: cos_sim_spearman
3036
+ value: 72.69179486905233
3037
+ - type: euclidean_pearson
3038
+ value: 71.32341962627513
3039
+ - type: euclidean_spearman
3040
+ value: 72.69179043377405
3041
+ - type: manhattan_pearson
3042
+ value: 71.06180379791572
3043
+ - type: manhattan_spearman
3044
+ value: 72.400125270369
3045
+ - task:
3046
+ type: Reranking
3047
+ dataset:
3048
+ type: C-MTEB/Mmarco-reranking
3049
+ name: MTEB MMarcoReranking
3050
+ config: default
3051
+ split: dev
3052
+ revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
3053
+ metrics:
3054
+ - type: map
3055
+ value: 27.9616280919871
3056
+ - type: mrr
3057
+ value: 26.544047619047618
3058
+ - task:
3059
+ type: Retrieval
3060
+ dataset:
3061
+ type: C-MTEB/MMarcoRetrieval
3062
+ name: MTEB MMarcoRetrieval
3063
+ config: default
3064
+ split: dev
3065
+ revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
3066
+ metrics:
3067
+ - type: map_at_1
3068
+ value: 68.32300000000001
3069
+ - type: map_at_10
3070
+ value: 77.187
3071
+ - type: map_at_100
3072
+ value: 77.496
3073
+ - type: map_at_1000
3074
+ value: 77.503
3075
+ - type: map_at_3
3076
+ value: 75.405
3077
+ - type: map_at_5
3078
+ value: 76.539
3079
+ - type: mrr_at_1
3080
+ value: 70.616
3081
+ - type: mrr_at_10
3082
+ value: 77.703
3083
+ - type: mrr_at_100
3084
+ value: 77.97699999999999
3085
+ - type: mrr_at_1000
3086
+ value: 77.984
3087
+ - type: mrr_at_3
3088
+ value: 76.139
3089
+ - type: mrr_at_5
3090
+ value: 77.125
3091
+ - type: ndcg_at_1
3092
+ value: 70.616
3093
+ - type: ndcg_at_10
3094
+ value: 80.741
3095
+ - type: ndcg_at_100
3096
+ value: 82.123
3097
+ - type: ndcg_at_1000
3098
+ value: 82.32300000000001
3099
+ - type: ndcg_at_3
3100
+ value: 77.35600000000001
3101
+ - type: ndcg_at_5
3102
+ value: 79.274
3103
+ - type: precision_at_1
3104
+ value: 70.616
3105
+ - type: precision_at_10
3106
+ value: 9.696
3107
+ - type: precision_at_100
3108
+ value: 1.038
3109
+ - type: precision_at_1000
3110
+ value: 0.106
3111
+ - type: precision_at_3
3112
+ value: 29.026000000000003
3113
+ - type: precision_at_5
3114
+ value: 18.433
3115
+ - type: recall_at_1
3116
+ value: 68.32300000000001
3117
+ - type: recall_at_10
3118
+ value: 91.186
3119
+ - type: recall_at_100
3120
+ value: 97.439
3121
+ - type: recall_at_1000
3122
+ value: 99.004
3123
+ - type: recall_at_3
3124
+ value: 82.218
3125
+ - type: recall_at_5
3126
+ value: 86.797
3127
+ - task:
3128
+ type: Classification
3129
+ dataset:
3130
+ type: mteb/amazon_massive_intent
3131
+ name: MTEB MassiveIntentClassification (zh-CN)
3132
+ config: zh-CN
3133
+ split: test
3134
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
3135
+ metrics:
3136
+ - type: accuracy
3137
+ value: 74.78143913920646
3138
+ - type: f1
3139
+ value: 72.6141122227626
3140
+ - task:
3141
+ type: Classification
3142
+ dataset:
3143
+ type: mteb/amazon_massive_scenario
3144
+ name: MTEB MassiveScenarioClassification (zh-CN)
3145
+ config: zh-CN
3146
+ split: test
3147
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
3148
+ metrics:
3149
+ - type: accuracy
3150
+ value: 76.98722259583053
3151
+ - type: f1
3152
+ value: 76.5974920207624
3153
+ - task:
3154
+ type: Retrieval
3155
+ dataset:
3156
+ type: C-MTEB/MedicalRetrieval
3157
+ name: MTEB MedicalRetrieval
3158
+ config: default
3159
+ split: dev
3160
+ revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
3161
+ metrics:
3162
+ - type: map_at_1
3163
+ value: 51.800000000000004
3164
+ - type: map_at_10
3165
+ value: 57.938
3166
+ - type: map_at_100
3167
+ value: 58.494
3168
+ - type: map_at_1000
3169
+ value: 58.541
3170
+ - type: map_at_3
3171
+ value: 56.617
3172
+ - type: map_at_5
3173
+ value: 57.302
3174
+ - type: mrr_at_1
3175
+ value: 51.800000000000004
3176
+ - type: mrr_at_10
3177
+ value: 57.938
3178
+ - type: mrr_at_100
3179
+ value: 58.494
3180
+ - type: mrr_at_1000
3181
+ value: 58.541
3182
+ - type: mrr_at_3
3183
+ value: 56.617
3184
+ - type: mrr_at_5
3185
+ value: 57.302
3186
+ - type: ndcg_at_1
3187
+ value: 51.800000000000004
3188
+ - type: ndcg_at_10
3189
+ value: 60.891
3190
+ - type: ndcg_at_100
3191
+ value: 63.897000000000006
3192
+ - type: ndcg_at_1000
3193
+ value: 65.231
3194
+ - type: ndcg_at_3
3195
+ value: 58.108000000000004
3196
+ - type: ndcg_at_5
3197
+ value: 59.343
3198
+ - type: precision_at_1
3199
+ value: 51.800000000000004
3200
+ - type: precision_at_10
3201
+ value: 7.02
3202
+ - type: precision_at_100
3203
+ value: 0.8500000000000001
3204
+ - type: precision_at_1000
3205
+ value: 0.096
3206
+ - type: precision_at_3
3207
+ value: 20.8
3208
+ - type: precision_at_5
3209
+ value: 13.08
3210
+ - type: recall_at_1
3211
+ value: 51.800000000000004
3212
+ - type: recall_at_10
3213
+ value: 70.19999999999999
3214
+ - type: recall_at_100
3215
+ value: 85.0
3216
+ - type: recall_at_1000
3217
+ value: 95.7
3218
+ - type: recall_at_3
3219
+ value: 62.4
3220
+ - type: recall_at_5
3221
+ value: 65.4
3222
+ - task:
3223
+ type: Classification
3224
+ dataset:
3225
+ type: C-MTEB/MultilingualSentiment-classification
3226
+ name: MTEB MultilingualSentiment
3227
+ config: default
3228
+ split: validation
3229
+ revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
3230
+ metrics:
3231
+ - type: accuracy
3232
+ value: 80.39333333333335
3233
+ - type: f1
3234
+ value: 80.42683132366277
3235
+ - task:
3236
+ type: PairClassification
3237
+ dataset:
3238
+ type: C-MTEB/OCNLI
3239
+ name: MTEB Ocnli
3240
+ config: default
3241
+ split: validation
3242
+ revision: 66e76a618a34d6d565d5538088562851e6daa7ec
3243
+ metrics:
3244
+ - type: cos_sim_accuracy
3245
+ value: 70.7634001082837
3246
+ - type: cos_sim_ap
3247
+ value: 74.97527385556558
3248
+ - type: cos_sim_f1
3249
+ value: 72.77277277277277
3250
+ - type: cos_sim_precision
3251
+ value: 69.17221693625119
3252
+ - type: cos_sim_recall
3253
+ value: 76.76874340021119
3254
+ - type: dot_accuracy
3255
+ value: 70.7634001082837
3256
+ - type: dot_ap
3257
+ value: 74.97527385556558
3258
+ - type: dot_f1
3259
+ value: 72.77277277277277
3260
+ - type: dot_precision
3261
+ value: 69.17221693625119
3262
+ - type: dot_recall
3263
+ value: 76.76874340021119
3264
+ - type: euclidean_accuracy
3265
+ value: 70.7634001082837
3266
+ - type: euclidean_ap
3267
+ value: 74.97527385556558
3268
+ - type: euclidean_f1
3269
+ value: 72.77277277277277
3270
+ - type: euclidean_precision
3271
+ value: 69.17221693625119
3272
+ - type: euclidean_recall
3273
+ value: 76.76874340021119
3274
+ - type: manhattan_accuracy
3275
+ value: 69.89713048186248
3276
+ - type: manhattan_ap
3277
+ value: 74.25943370061067
3278
+ - type: manhattan_f1
3279
+ value: 72.17268887846082
3280
+ - type: manhattan_precision
3281
+ value: 64.94932432432432
3282
+ - type: manhattan_recall
3283
+ value: 81.20380147835269
3284
+ - type: max_accuracy
3285
+ value: 70.7634001082837
3286
+ - type: max_ap
3287
+ value: 74.97527385556558
3288
+ - type: max_f1
3289
+ value: 72.77277277277277
3290
+ - task:
3291
+ type: Classification
3292
+ dataset:
3293
+ type: C-MTEB/OnlineShopping-classification
3294
+ name: MTEB OnlineShopping
3295
+ config: default
3296
+ split: test
3297
+ revision: e610f2ebd179a8fda30ae534c3878750a96db120
3298
+ metrics:
3299
+ - type: accuracy
3300
+ value: 92.92000000000002
3301
+ - type: ap
3302
+ value: 91.98475625106201
3303
+ - type: f1
3304
+ value: 92.91841470541901
3305
+ - task:
3306
+ type: STS
3307
+ dataset:
3308
+ type: C-MTEB/PAWSX
3309
+ name: MTEB PAWSX
3310
+ config: default
3311
+ split: test
3312
+ revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
3313
+ metrics:
3314
+ - type: cos_sim_pearson
3315
+ value: 14.383440096352668
3316
+ - type: cos_sim_spearman
3317
+ value: 16.306924065606417
3318
+ - type: euclidean_pearson
3319
+ value: 18.41761420026285
3320
+ - type: euclidean_spearman
3321
+ value: 16.306657048204574
3322
+ - type: manhattan_pearson
3323
+ value: 18.4377010794545
3324
+ - type: manhattan_spearman
3325
+ value: 16.36919038809279
3326
+ - task:
3327
+ type: STS
3328
+ dataset:
3329
+ type: C-MTEB/QBQTC
3330
+ name: MTEB QBQTC
3331
+ config: default
3332
+ split: test
3333
+ revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
3334
+ metrics:
3335
+ - type: cos_sim_pearson
3336
+ value: 31.95106420311818
3337
+ - type: cos_sim_spearman
3338
+ value: 34.89277148116508
3339
+ - type: euclidean_pearson
3340
+ value: 32.94933182954164
3341
+ - type: euclidean_spearman
3342
+ value: 34.89280064539983
3343
+ - type: manhattan_pearson
3344
+ value: 32.86089069741366
3345
+ - type: manhattan_spearman
3346
+ value: 34.7932921716507
3347
+ - task:
3348
+ type: STS
3349
+ dataset:
3350
+ type: mteb/sts22-crosslingual-sts
3351
+ name: MTEB STS22 (zh)
3352
+ config: zh
3353
+ split: test
3354
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
3355
+ metrics:
3356
+ - type: cos_sim_pearson
3357
+ value: 67.41628669863584
3358
+ - type: cos_sim_spearman
3359
+ value: 67.87238206703478
3360
+ - type: euclidean_pearson
3361
+ value: 67.67834985311778
3362
+ - type: euclidean_spearman
3363
+ value: 67.87238206703478
3364
+ - type: manhattan_pearson
3365
+ value: 68.23423896742973
3366
+ - type: manhattan_spearman
3367
+ value: 68.27069260687092
3368
+ - task:
3369
+ type: STS
3370
+ dataset:
3371
+ type: C-MTEB/STSB
3372
+ name: MTEB STSB
3373
+ config: default
3374
+ split: test
3375
+ revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
3376
+ metrics:
3377
+ - type: cos_sim_pearson
3378
+ value: 77.31628954400037
3379
+ - type: cos_sim_spearman
3380
+ value: 76.83296022489624
3381
+ - type: euclidean_pearson
3382
+ value: 76.69680425261211
3383
+ - type: euclidean_spearman
3384
+ value: 76.83287843321102
3385
+ - type: manhattan_pearson
3386
+ value: 76.65603163327958
3387
+ - type: manhattan_spearman
3388
+ value: 76.80803503360451
3389
+ - task:
3390
+ type: Reranking
3391
+ dataset:
3392
+ type: C-MTEB/T2Reranking
3393
+ name: MTEB T2Reranking
3394
+ config: default
3395
+ split: dev
3396
+ revision: 76631901a18387f85eaa53e5450019b87ad58ef9
3397
+ metrics:
3398
+ - type: map
3399
+ value: 66.73038448968596
3400
+ - type: mrr
3401
+ value: 77.26510193334836
3402
+ - task:
3403
+ type: Retrieval
3404
+ dataset:
3405
+ type: C-MTEB/T2Retrieval
3406
+ name: MTEB T2Retrieval
3407
+ config: default
3408
+ split: dev
3409
+ revision: 8731a845f1bf500a4f111cf1070785c793d10e64
3410
+ metrics:
3411
+ - type: map_at_1
3412
+ value: 28.157
3413
+ - type: map_at_10
3414
+ value: 79.00399999999999
3415
+ - type: map_at_100
3416
+ value: 82.51899999999999
3417
+ - type: map_at_1000
3418
+ value: 82.577
3419
+ - type: map_at_3
3420
+ value: 55.614
3421
+ - type: map_at_5
3422
+ value: 68.292
3423
+ - type: mrr_at_1
3424
+ value: 91.167
3425
+ - type: mrr_at_10
3426
+ value: 93.391
3427
+ - type: mrr_at_100
3428
+ value: 93.467
3429
+ - type: mrr_at_1000
3430
+ value: 93.47
3431
+ - type: mrr_at_3
3432
+ value: 93.001
3433
+ - type: mrr_at_5
3434
+ value: 93.254
3435
+ - type: ndcg_at_1
3436
+ value: 91.167
3437
+ - type: ndcg_at_10
3438
+ value: 86.155
3439
+ - type: ndcg_at_100
3440
+ value: 89.425
3441
+ - type: ndcg_at_1000
3442
+ value: 89.983
3443
+ - type: ndcg_at_3
3444
+ value: 87.516
3445
+ - type: ndcg_at_5
3446
+ value: 86.148
3447
+ - type: precision_at_1
3448
+ value: 91.167
3449
+ - type: precision_at_10
3450
+ value: 42.697
3451
+ - type: precision_at_100
3452
+ value: 5.032
3453
+ - type: precision_at_1000
3454
+ value: 0.516
3455
+ - type: precision_at_3
3456
+ value: 76.45100000000001
3457
+ - type: precision_at_5
3458
+ value: 64.051
3459
+ - type: recall_at_1
3460
+ value: 28.157
3461
+ - type: recall_at_10
3462
+ value: 84.974
3463
+ - type: recall_at_100
3464
+ value: 95.759
3465
+ - type: recall_at_1000
3466
+ value: 98.583
3467
+ - type: recall_at_3
3468
+ value: 57.102
3469
+ - type: recall_at_5
3470
+ value: 71.383
3471
+ - task:
3472
+ type: Classification
3473
+ dataset:
3474
+ type: C-MTEB/TNews-classification
3475
+ name: MTEB TNews
3476
+ config: default
3477
+ split: validation
3478
+ revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
3479
+ metrics:
3480
+ - type: accuracy
3481
+ value: 55.031
3482
+ - type: f1
3483
+ value: 53.07992810732314
3484
+ - task:
3485
+ type: Clustering
3486
+ dataset:
3487
+ type: C-MTEB/ThuNewsClusteringP2P
3488
+ name: MTEB ThuNewsClusteringP2P
3489
+ config: default
3490
+ split: test
3491
+ revision: 5798586b105c0434e4f0fe5e767abe619442cf93
3492
+ metrics:
3493
+ - type: v_measure
3494
+ value: 72.80915114296552
3495
+ - task:
3496
+ type: Clustering
3497
+ dataset:
3498
+ type: C-MTEB/ThuNewsClusteringS2S
3499
+ name: MTEB ThuNewsClusteringS2S
3500
+ config: default
3501
+ split: test
3502
+ revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
3503
+ metrics:
3504
+ - type: v_measure
3505
+ value: 70.86374654127641
3506
+ - task:
3507
+ type: Retrieval
3508
+ dataset:
3509
+ type: C-MTEB/VideoRetrieval
3510
+ name: MTEB VideoRetrieval
3511
+ config: default
3512
+ split: dev
3513
+ revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
3514
+ metrics:
3515
+ - type: map_at_1
3516
+ value: 63.6
3517
+ - type: map_at_10
3518
+ value: 72.673
3519
+ - type: map_at_100
3520
+ value: 73.05199999999999
3521
+ - type: map_at_1000
3522
+ value: 73.057
3523
+ - type: map_at_3
3524
+ value: 70.833
3525
+ - type: map_at_5
3526
+ value: 72.05799999999999
3527
+ - type: mrr_at_1
3528
+ value: 63.6
3529
+ - type: mrr_at_10
3530
+ value: 72.673
3531
+ - type: mrr_at_100
3532
+ value: 73.05199999999999
3533
+ - type: mrr_at_1000
3534
+ value: 73.057
3535
+ - type: mrr_at_3
3536
+ value: 70.833
3537
+ - type: mrr_at_5
3538
+ value: 72.05799999999999
3539
+ - type: ndcg_at_1
3540
+ value: 63.6
3541
+ - type: ndcg_at_10
3542
+ value: 76.776
3543
+ - type: ndcg_at_100
3544
+ value: 78.52900000000001
3545
+ - type: ndcg_at_1000
3546
+ value: 78.696
3547
+ - type: ndcg_at_3
3548
+ value: 73.093
3549
+ - type: ndcg_at_5
3550
+ value: 75.288
3551
+ - type: precision_at_1
3552
+ value: 63.6
3553
+ - type: precision_at_10
3554
+ value: 8.95
3555
+ - type: precision_at_100
3556
+ value: 0.975
3557
+ - type: precision_at_1000
3558
+ value: 0.099
3559
+ - type: precision_at_3
3560
+ value: 26.533
3561
+ - type: precision_at_5
3562
+ value: 16.98
3563
+ - type: recall_at_1
3564
+ value: 63.6
3565
+ - type: recall_at_10
3566
+ value: 89.5
3567
+ - type: recall_at_100
3568
+ value: 97.5
3569
+ - type: recall_at_1000
3570
+ value: 98.9
3571
+ - type: recall_at_3
3572
+ value: 79.60000000000001
3573
+ - type: recall_at_5
3574
+ value: 84.89999999999999
3575
+ - task:
3576
+ type: Classification
3577
+ dataset:
3578
+ type: C-MTEB/waimai-classification
3579
+ name: MTEB Waimai
3580
+ config: default
3581
+ split: test
3582
+ revision: 339287def212450dcaa9df8c22bf93e9980c7023
3583
+ metrics:
3584
+ - type: accuracy
3585
+ value: 89.39999999999999
3586
+ - type: ap
3587
+ value: 75.52087544076016
3588
+ - type: f1
3589
+ value: 87.7629629899278
3590
+ ---
3591
+
3592
+ <p align="center"><b>GME: General Multimodal Embeddings</b></p>
3593
+
3594
+ ## GME-Qwen2VL-7B
3595
+
3596
+ We are excited to present `GME-Qwen2VL` models, our first generation **multimodal embedding models** for text and images,
3597
+ which are based on advanced [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) multimodal large language models (MLLMs).
3598
+
3599
+ The `GME-Qwen2VL` models support three input forms: **text**, **image**, and **image-text pair**, all of which can produce universal vector representations and have powerful retrieval performance.
3600
+
3601
+ - **High Performance**: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (**UMRB**) and strong **MTEB** evaluation scores.
3602
+ - **Dynamic Image Resolution**: Benefiting from `Qwen2-VL` and our training data, GME models support dynamic resolution image input.
3603
+ Our models are able to perform leadingly in the **visual document retrieval** task which requires fine-grained understanding of document screenshots.
3604
+ You can control to balance performance and efficiency.
3605
+
3606
+ **Developed by**: Tongyi Lab, Alibaba Group
3607
+
3608
+ **Paper**: GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
3609
+
3610
+
3611
+ ## Model List
3612
+ | Models | Model Size | Max Seq. Length | Dimension | MTEB-en| UMRB |
3613
+ |:-----: | :-----: |:-----: |:-----: |:-----: | :-----: |
3614
+ |[`gme-Qwen2VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | - | 64.45 |
3615
+ |[`gme-Qwen2VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | - | 67.02 |
3616
+
3617
+ ## Usage
3618
+
3619
+ **Use with custom code**
3620
+
3621
+ ```python
3622
+ # You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2VL-2B/blob/main/scripts/gme_inference.py
3623
+ from gme_inference import GmeQwen2VL
3624
+
3625
+ texts = [
3626
+ "What kind of car is this?",
3627
+ "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
3628
+ ]
3629
+ images = [
3630
+ 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
3631
+ 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
3632
+ ]
3633
+
3634
+ gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
3635
+
3636
+ # Single-modal embedding
3637
+ e_text = gme.get_text_embeddings(texts=texts)
3638
+ e_image = gme.get_image_embeddings(images=images)
3639
+ print((e_text * e_image).sum(-1))
3640
+ ## tensor([0.2281, 0.6001], dtype=torch.float16)
3641
+
3642
+ # How to set embedding instruction
3643
+ e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
3644
+ # If is_query=False, we always use the default instruction.
3645
+ e_corpus = gme.get_image_embeddings(images=images, is_query=False)
3646
+ print((e_query * e_corpus).sum(-1))
3647
+ ## tensor([0.2433, 0.7051], dtype=torch.float16)
3648
+
3649
+ # Fused-modal embedding
3650
+ e_fused = gme.get_fused_embeddings(texts=texts, images=images)
3651
+ print((e_fused[0] * e_fused[1]).sum())
3652
+ ## tensor(0.6108, dtype=torch.float16)
3653
+
3654
+ ```
3655
+
3656
+ ## Evaluation
3657
+
3658
+ We validated the performance on our universal multimodal retrieval benchmark (**UMRB**) among others.
3659
+
3660
+ | | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. |
3661
+ |--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:|
3662
+ | | | T→T (16) | I→I (1) | T→I (4) | T→VD (10) | I→T (4) | T→IT (2) | IT→T (5) | IT→I (2) | IT→IT (3) | (47) |
3663
+ | VISTA | 0.2B | 55.15 | **31.98** | 32.88 | 10.12 | 31.23 | 45.81 | 53.32 | 8.97 | 26.26 | 36.74 |
3664
+ | CLIP-SF | 0.4B | 39.75 | 31.42 | 59.05 | 24.09 | 62.95 | 66.41 | 53.32 | 34.9 | 55.65 | 43.24 |
3665
+ | One-Peace | 4B | 43.54 | 31.27 | 61.38 | 42.9 | 65.59 | 42.72 | 28.29 | 6.73 | 23.41 | 42.03 |
3666
+ | DSE | 4.2B | 48.94 | 27.92 | 40.75 | 78.21 | 52.54 | 49.62 | 35.44 | 8.36 | 40.18 | 50.63 |
3667
+ | E5-V | 8.4B | 52.41 | 27.36 | 46.56 | 41.22 | 47.95 | 54.13 | 32.9 | 23.17 | 7.23 | 42.48 |
3668
+ | **GME-Qwen2VL-2B** | 2.2B | 55.93 | 29.86 | 57.36 | 87.84 | **61.93** | 76.47 | 64.58 | 37.02 | 66.47 | 64.45 |
3669
+ | **GME-Qwen2VL-7B** | 8.3B | **58.19** | 31.89 | **61.35** | **89.92** | 60.83 | **80.94** | **66.18** | **42.56** | **73.62** | **67.02** |
3670
+
3671
+ The [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) English tab shows the text embeddings performence of our model.
3672
+
3673
+ **More detailed experimental results can be found in the [paper](https://arxiv.org/pdf/2407.19669)**.
3674
+
3675
+
3676
+ ## Limitations
3677
+
3678
+ - **Single Image Input**: In `Qwen2-VL`, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency.
3679
+ Due to the lack of relevant data, our models and evaluations retain one single image.
3680
+ - **English-only Training**: Our models are trained on english data only. Although the `Qwen2-VL` models are multilingual, the multilingual-multimodal embedding performance are not guaranteed.
3681
+
3682
+ We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version.
3683
+
3684
+
3685
+ ## Redistribution and Use
3686
+
3687
+ We welcome and appreciate various applications of GME models and further improvements to the GME models themselves.
3688
+ Following Llama license,
3689
+ 1. if you distribute or make available the GME models (or any derivative works thereof),
3690
+ or a product or service (including another AI model) that contains any of them,
3691
+ you shall prominently display “Built with GME” on a related website, user interface, blogpost, about page, or product documentation;
3692
+ 2. if you use the GME models or any outputs or results of them to create, train, fine tune, or otherwise improve an AI model,
3693
+ which is distributed or made available, you shall also include “GME” at the beginning of any such AI model name.
3694
+
3695
+
3696
+
3697
+ ## Citation
3698
+ If you find our paper or models helpful, please consider cite:
3699
+
3700
+ ```
3701
+ @misc{zhang2024gme,
3702
+ title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs},
3703
+ author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min},
3704
+ year={2024},
3705
+ eprint={2412.xxxxx},
3706
+ archivePrefix={arXiv},
3707
+ primaryClass={cs.CL},
3708
+ url={https://arxiv.org/abs/2412.xxxxx},
3709
+ }
3710
+ ```
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "gme-Qwen2-VL-2B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8960,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "type": "mrope"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.45.0.dev0",
34
+ "use_cache": true,
35
+ "use_sliding_window": false,
36
+ "video_token_id": 151656,
37
+ "vision_config": {
38
+ "hidden_size": 1536,
39
+ "in_chans": 3,
40
+ "model_type": "qwen2_vl",
41
+ "spatial_patch_size": 14
42
+ },
43
+ "vision_end_token_id": 151653,
44
+ "vision_start_token_id": 151652,
45
+ "vision_token_id": 151654,
46
+ "vocab_size": 151936
47
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.1,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.45.0.dev0"
14
+ }
gme_inference.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+ import math
5
+ import os
6
+ from typing import Dict, List, Optional
7
+
8
+ import torch
9
+ from PIL import Image
10
+ from torch.utils.data import DataLoader
11
+ from tqdm.autonotebook import tqdm
12
+ from transformers import AutoModelForVision2Seq, AutoProcessor
13
+
14
+
15
+ class GmeQwen2VL:
16
+ def __init__(
17
+ self,
18
+ model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
19
+ model_path: Optional[str] = None,
20
+ device: str = "cuda" if torch.cuda.is_available() else "cpu",
21
+ min_image_tokens=256,
22
+ max_image_tokens=1280,
23
+ max_length=1800,
24
+ **kwargs,
25
+ ) -> None:
26
+ model_name = model_path or model_name
27
+ self.base = AutoModelForVision2Seq.from_pretrained(
28
+ model_name, torch_dtype=torch.float16, **kwargs
29
+ )
30
+ self.base.eval()
31
+ self.normalize = True
32
+ self.device = device
33
+ min_pixels = min_image_tokens * 28 * 28
34
+ max_pixels = max_image_tokens * 28 * 28
35
+ self.max_length = max_length
36
+ self.processor = AutoProcessor.from_pretrained(
37
+ model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
38
+ )
39
+ self.processor.tokenizer.padding_side = 'right'
40
+ self.defualt_instruction = 'You are a helpful assistant.'
41
+ self.sep = ' '
42
+
43
+ def forward(
44
+ self,
45
+ input_ids: Optional[torch.LongTensor] = None,
46
+ attention_mask: Optional[torch.Tensor] = None,
47
+ position_ids: Optional[torch.LongTensor] = None,
48
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
49
+ inputs_embeds: Optional[torch.FloatTensor] = None,
50
+ pixel_values: Optional[torch.Tensor] = None,
51
+ # pixel_values_videos: Optional[torch.FloatTensor] = None,
52
+ image_grid_thw: Optional[torch.LongTensor] = None,
53
+ # video_grid_thw: Optional[torch.LongTensor] = None,
54
+ pooling_mask: Optional[torch.LongTensor] = None,
55
+ **kwargs
56
+ ) -> torch.Tensor:
57
+ if inputs_embeds is None:
58
+ inputs_embeds = self.base.model.embed_tokens(input_ids)
59
+ if pixel_values is not None:
60
+ pixel_values = pixel_values.type(self.base.visual.get_dtype())
61
+ image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
62
+ image_mask = input_ids == self.base.config.image_token_id
63
+ inputs_embeds[image_mask] = image_embeds
64
+ # if pixel_values_videos is not None:
65
+ # pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
66
+ # video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
67
+ # video_mask = input_ids == self.base.config.video_token_id
68
+ # inputs_embeds[video_mask] = video_embeds
69
+ if attention_mask is not None:
70
+ attention_mask = attention_mask.to(inputs_embeds.device)
71
+
72
+ outputs = self.base.model(
73
+ input_ids=None,
74
+ position_ids=position_ids,
75
+ attention_mask=attention_mask,
76
+ past_key_values=past_key_values,
77
+ inputs_embeds=inputs_embeds,
78
+ )
79
+
80
+ pooling_mask = attention_mask if pooling_mask is None else pooling_mask
81
+ left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
82
+ if left_padding:
83
+ embeddings = outputs.last_hidden_state[:, -1]
84
+ else:
85
+ sequence_lengths = pooling_mask.sum(dim=1) - 1
86
+ batch_size = outputs.last_hidden_state.shape[0]
87
+ embeddings = outputs.last_hidden_state[torch.arange(
88
+ batch_size, device=outputs.last_hidden_state.device
89
+ ), sequence_lengths]
90
+ if self.normalize:
91
+ embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
92
+ return embeddings.contiguous()
93
+
94
+ def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
95
+ self.base.to(self.device)
96
+ # Inputs must be batched
97
+ input_texts, input_images = list(), list()
98
+ for t, i in zip(texts, images):
99
+ if not is_query or instruction is None:
100
+ instruction = self.defualt_instruction
101
+ input_str = ''
102
+ if i is None:
103
+ input_images = None # All examples in the same batch are consistent
104
+ else:
105
+ input_str += '<|vision_start|><|image_pad|><|vision_end|>'
106
+ i = fetch_image(i)
107
+ input_images.append(i)
108
+ if t is not None:
109
+ input_str += t
110
+ msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
111
+ input_texts.append(msg)
112
+
113
+ inputs = self.processor(
114
+ text=input_texts,
115
+ images=input_images,
116
+ padding=True,
117
+ truncation=True,
118
+ max_length=self.max_length,
119
+ return_tensors='pt'
120
+ )
121
+ inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO
122
+ with torch.no_grad():
123
+ embeddings = self.forward(**inputs)
124
+ return embeddings
125
+
126
+ def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
127
+ return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)
128
+
129
+ def encode_queries(self, queries: List[str], **kwargs):
130
+ embeddings = self.encode(queries, **kwargs)
131
+ return embeddings
132
+
133
+ def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
134
+ if type(corpus) is dict:
135
+ sentences = [
136
+ (corpus["title"][i] + self.sep + corpus["text"][i]).strip()
137
+ if "title" in corpus
138
+ else corpus["text"][i].strip()
139
+ for i in range(len(corpus["text"]))
140
+ ]
141
+ else:
142
+ sentences = [
143
+ (doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
144
+ for doc in corpus
145
+ ]
146
+ embeddings = self.encode(sentences, is_query=False, **kwargs)
147
+ return embeddings
148
+
149
+ def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
150
+ return self.get_fused_embeddings(images=images, **kwargs)
151
+
152
+ def get_text_embeddings(self, texts: list[str], **kwargs):
153
+ return self.get_fused_embeddings(texts=texts, **kwargs)
154
+
155
+ def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
156
+ if isinstance(images, DataLoader):
157
+ image_loader = images
158
+ batch_size = image_loader.batch_size
159
+ image_loader.dataset.transform = None
160
+ else:
161
+ batch_size = kwargs.pop('batch_size', 32)
162
+ if images is None:
163
+ image_loader = None
164
+ else:
165
+ image_loader = DataLoader(
166
+ images,
167
+ batch_size=batch_size,
168
+ shuffle=False,
169
+ collate_fn=custom_collate_fn,
170
+ num_workers=min(math.floor(os.cpu_count() / 2), 8),
171
+ )
172
+
173
+ if texts is None:
174
+ assert image_loader is not None
175
+ n_batch = len(image_loader)
176
+ else:
177
+ n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
178
+ image_loader = image_loader or [None] * n_batch
179
+
180
+ all_embeddings = list()
181
+ none_batch = [None] * batch_size
182
+ show_progress_bar = kwargs.pop('show_progress_bar', True)
183
+ pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
184
+ for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
185
+ text_batch = none_batch if texts is None else texts[n: n+batch_size]
186
+ img_batch = none_batch if img_batch is None else img_batch
187
+ embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
188
+ pbar.update(1)
189
+ all_embeddings.append(embeddings.cpu())
190
+ pbar.close()
191
+ all_embeddings = torch.cat(all_embeddings, dim=0)
192
+ return all_embeddings
193
+
194
+
195
+ def custom_collate_fn(batch):
196
+ return batch
197
+
198
+
199
+ ### Copied from qwen_vl_utils.vision_process.py
200
+ import base64
201
+ from io import BytesIO
202
+ import requests
203
+
204
+ IMAGE_FACTOR = 28
205
+ MIN_PIXELS = 4 * 28 * 28
206
+ MAX_PIXELS = 16384 * 28 * 28
207
+ MAX_RATIO = 200
208
+
209
+
210
+ def round_by_factor(number: int, factor: int) -> int:
211
+ """Returns the closest integer to 'number' that is divisible by 'factor'."""
212
+ return round(number / factor) * factor
213
+
214
+
215
+ def ceil_by_factor(number: int, factor: int) -> int:
216
+ """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
217
+ return math.ceil(number / factor) * factor
218
+
219
+
220
+ def floor_by_factor(number: int, factor: int) -> int:
221
+ """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
222
+ return math.floor(number / factor) * factor
223
+
224
+
225
+ def smart_resize(
226
+ height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
227
+ ) -> tuple[int, int]:
228
+ """
229
+ Rescales the image so that the following conditions are met:
230
+
231
+ 1. Both dimensions (height and width) are divisible by 'factor'.
232
+
233
+ 2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
234
+
235
+ 3. The aspect ratio of the image is maintained as closely as possible.
236
+ """
237
+ h_bar = max(factor, round_by_factor(height, factor))
238
+ w_bar = max(factor, round_by_factor(width, factor))
239
+ if h_bar * w_bar > max_pixels:
240
+ beta = math.sqrt((height * width) / max_pixels)
241
+ h_bar = floor_by_factor(height / beta, factor)
242
+ w_bar = floor_by_factor(width / beta, factor)
243
+ elif h_bar * w_bar < min_pixels:
244
+ beta = math.sqrt(min_pixels / (height * width))
245
+ h_bar = ceil_by_factor(height * beta, factor)
246
+ w_bar = ceil_by_factor(width * beta, factor)
247
+
248
+ if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
249
+ logging.warning(
250
+ f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
251
+ )
252
+ if h_bar > w_bar:
253
+ h_bar = w_bar * MAX_RATIO
254
+ else:
255
+ w_bar = h_bar * MAX_RATIO
256
+ return h_bar, w_bar
257
+
258
+
259
+ def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
260
+ image_obj = None
261
+ if isinstance(image, Image.Image):
262
+ image_obj = image
263
+ elif image.startswith("http://") or image.startswith("https://"):
264
+ image_obj = Image.open(requests.get(image, stream=True).raw)
265
+ elif image.startswith("file://"):
266
+ image_obj = Image.open(image[7:])
267
+ elif image.startswith("data:image"):
268
+ if "base64," in image:
269
+ _, base64_data = image.split("base64,", 1)
270
+ data = base64.b64decode(base64_data)
271
+ image_obj = Image.open(BytesIO(data))
272
+ else:
273
+ image_obj = Image.open(image)
274
+ if image_obj is None:
275
+ raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
276
+ image = image_obj.convert("RGB")
277
+ ## resize
278
+ # if "resized_height" in ele and "resized_width" in ele:
279
+ # resized_height, resized_width = smart_resize(
280
+ # ele["resized_height"],
281
+ # ele["resized_width"],
282
+ # factor=size_factor,
283
+ # )
284
+ # else:
285
+ width, height = image.size
286
+ # min_pixels = ele.get("min_pixels", MIN_PIXELS)
287
+ # max_pixels = ele.get("max_pixels", MAX_PIXELS)
288
+ resized_height, resized_width = smart_resize(
289
+ height,
290
+ width,
291
+ factor=size_factor,
292
+ min_pixels=MIN_PIXELS,
293
+ max_pixels=MAX_PIXELS,
294
+ )
295
+ image = image.resize((resized_width, resized_height))
296
+
297
+ return image
298
+ ###
299
+
300
+
301
+ if __name__ == '__main__':
302
+ texts = [
303
+ "What kind of car is this?",
304
+ "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
305
+ ]
306
+ images = [
307
+ 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
308
+ 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
309
+ ]
310
+
311
+ gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")
312
+
313
+ # Single-modal embedding
314
+ e_text = gme.get_text_embeddings(texts=texts)
315
+ e_image = gme.get_image_embeddings(images=images)
316
+ print((e_text * e_image).sum(-1))
317
+ ## tensor([0.2281, 0.6001], dtype=torch.float16)
318
+
319
+ # How to set embedding instruction
320
+ e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
321
+ # If is_query=False, we always use the default instruction.
322
+ e_corpus = gme.get_image_embeddings(images=images, is_query=False)
323
+ print((e_query * e_corpus).sum(-1))
324
+ ## tensor([0.2433, 0.7051], dtype=torch.float16)
325
+
326
+ # Fused-modal embedding
327
+ e_fused = gme.get_fused_embeddings(texts=texts, images=images)
328
+ print((e_fused[0] * e_fused[1]).sum())
329
+ ## tensor(0.6108, dtype=torch.float16)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce525de1d47307ebf63285ce4f2f80ca8ffffd94235b2151585e5714307e4e99
3
+ size 4046085544
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b42b76064f5d14ee9d0390f9a1f3571fc66eae4f40764f818cb5e9aafc5d6f5
3
+ size 4063188000
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3f1342fe1dd7df1582be00ebd45557316015050ae2edb841e61150825f16adc
3
+ size 726747736
model.safetensors.index.json ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8835942400
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
259
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
260
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
261
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
262
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
263
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
264
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
265
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
266
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
267
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
268
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
269
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
271
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
272
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
273
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
274
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
275
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
276
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
277
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
278
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
279
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
280
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
281
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
282
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
283
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
284
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
285
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
286
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
287
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
288
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
291
+ "model.layers.5.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
293
+ "model.layers.5.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
294
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
295
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00003.safetensors",
296
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
297
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
298
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
299
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
300
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
301
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
302
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
303
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
304
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
305
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00003.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
312
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
313
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
314
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
315
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
316
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
317
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
318
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
319
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
320
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
321
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
322
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
323
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
324
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
325
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
326
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
327
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
328
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
329
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
330
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
331
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
332
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
333
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
334
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
335
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
336
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00003.safetensors",
337
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
338
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
339
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00003.safetensors",
340
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
341
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00003.safetensors",
342
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
343
+ "model.norm.weight": "model-00003-of-00003.safetensors",
344
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00003.safetensors",
345
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00003.safetensors",
346
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00003.safetensors",
347
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00003.safetensors",
348
+ "visual.blocks.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
349
+ "visual.blocks.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
350
+ "visual.blocks.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
351
+ "visual.blocks.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
352
+ "visual.blocks.0.norm1.bias": "model-00001-of-00003.safetensors",
353
+ "visual.blocks.0.norm1.weight": "model-00001-of-00003.safetensors",
354
+ "visual.blocks.0.norm2.bias": "model-00001-of-00003.safetensors",
355
+ "visual.blocks.0.norm2.weight": "model-00001-of-00003.safetensors",
356
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00003.safetensors",
357
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00003.safetensors",
358
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00003.safetensors",
359
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00003.safetensors",
360
+ "visual.blocks.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
361
+ "visual.blocks.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
362
+ "visual.blocks.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
363
+ "visual.blocks.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
364
+ "visual.blocks.1.norm1.bias": "model-00001-of-00003.safetensors",
365
+ "visual.blocks.1.norm1.weight": "model-00001-of-00003.safetensors",
366
+ "visual.blocks.1.norm2.bias": "model-00001-of-00003.safetensors",
367
+ "visual.blocks.1.norm2.weight": "model-00001-of-00003.safetensors",
368
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00003.safetensors",
369
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00003.safetensors",
370
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00003.safetensors",
371
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00003.safetensors",
372
+ "visual.blocks.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
373
+ "visual.blocks.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
374
+ "visual.blocks.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
375
+ "visual.blocks.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
376
+ "visual.blocks.10.norm1.bias": "model-00001-of-00003.safetensors",
377
+ "visual.blocks.10.norm1.weight": "model-00001-of-00003.safetensors",
378
+ "visual.blocks.10.norm2.bias": "model-00001-of-00003.safetensors",
379
+ "visual.blocks.10.norm2.weight": "model-00001-of-00003.safetensors",
380
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00003.safetensors",
381
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00003.safetensors",
382
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00003.safetensors",
383
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00003.safetensors",
384
+ "visual.blocks.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
385
+ "visual.blocks.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
386
+ "visual.blocks.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
387
+ "visual.blocks.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
388
+ "visual.blocks.11.norm1.bias": "model-00001-of-00003.safetensors",
389
+ "visual.blocks.11.norm1.weight": "model-00001-of-00003.safetensors",
390
+ "visual.blocks.11.norm2.bias": "model-00001-of-00003.safetensors",
391
+ "visual.blocks.11.norm2.weight": "model-00001-of-00003.safetensors",
392
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00003.safetensors",
393
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00003.safetensors",
394
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00003.safetensors",
395
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00003.safetensors",
396
+ "visual.blocks.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
397
+ "visual.blocks.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
398
+ "visual.blocks.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
399
+ "visual.blocks.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
400
+ "visual.blocks.12.norm1.bias": "model-00001-of-00003.safetensors",
401
+ "visual.blocks.12.norm1.weight": "model-00001-of-00003.safetensors",
402
+ "visual.blocks.12.norm2.bias": "model-00001-of-00003.safetensors",
403
+ "visual.blocks.12.norm2.weight": "model-00001-of-00003.safetensors",
404
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00003.safetensors",
405
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00003.safetensors",
406
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00003.safetensors",
407
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00003.safetensors",
408
+ "visual.blocks.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
409
+ "visual.blocks.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
410
+ "visual.blocks.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
411
+ "visual.blocks.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
412
+ "visual.blocks.13.norm1.bias": "model-00001-of-00003.safetensors",
413
+ "visual.blocks.13.norm1.weight": "model-00001-of-00003.safetensors",
414
+ "visual.blocks.13.norm2.bias": "model-00001-of-00003.safetensors",
415
+ "visual.blocks.13.norm2.weight": "model-00001-of-00003.safetensors",
416
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00003.safetensors",
417
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00003.safetensors",
418
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00003.safetensors",
419
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00003.safetensors",
420
+ "visual.blocks.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
421
+ "visual.blocks.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
422
+ "visual.blocks.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
423
+ "visual.blocks.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
424
+ "visual.blocks.14.norm1.bias": "model-00001-of-00003.safetensors",
425
+ "visual.blocks.14.norm1.weight": "model-00001-of-00003.safetensors",
426
+ "visual.blocks.14.norm2.bias": "model-00001-of-00003.safetensors",
427
+ "visual.blocks.14.norm2.weight": "model-00001-of-00003.safetensors",
428
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00003.safetensors",
429
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00003.safetensors",
430
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00003.safetensors",
431
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00003.safetensors",
432
+ "visual.blocks.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
433
+ "visual.blocks.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
434
+ "visual.blocks.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
435
+ "visual.blocks.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
436
+ "visual.blocks.15.norm1.bias": "model-00001-of-00003.safetensors",
437
+ "visual.blocks.15.norm1.weight": "model-00001-of-00003.safetensors",
438
+ "visual.blocks.15.norm2.bias": "model-00001-of-00003.safetensors",
439
+ "visual.blocks.15.norm2.weight": "model-00001-of-00003.safetensors",
440
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00003.safetensors",
441
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00003.safetensors",
442
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00003.safetensors",
443
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00003.safetensors",
444
+ "visual.blocks.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
445
+ "visual.blocks.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
446
+ "visual.blocks.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
447
+ "visual.blocks.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
448
+ "visual.blocks.16.norm1.bias": "model-00001-of-00003.safetensors",
449
+ "visual.blocks.16.norm1.weight": "model-00001-of-00003.safetensors",
450
+ "visual.blocks.16.norm2.bias": "model-00001-of-00003.safetensors",
451
+ "visual.blocks.16.norm2.weight": "model-00001-of-00003.safetensors",
452
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00003.safetensors",
453
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00003.safetensors",
454
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00003.safetensors",
455
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00003.safetensors",
456
+ "visual.blocks.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
457
+ "visual.blocks.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
458
+ "visual.blocks.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
459
+ "visual.blocks.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
460
+ "visual.blocks.17.norm1.bias": "model-00001-of-00003.safetensors",
461
+ "visual.blocks.17.norm1.weight": "model-00001-of-00003.safetensors",
462
+ "visual.blocks.17.norm2.bias": "model-00001-of-00003.safetensors",
463
+ "visual.blocks.17.norm2.weight": "model-00001-of-00003.safetensors",
464
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00003.safetensors",
465
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00003.safetensors",
466
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00003.safetensors",
467
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00003.safetensors",
468
+ "visual.blocks.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
469
+ "visual.blocks.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
470
+ "visual.blocks.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
471
+ "visual.blocks.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
472
+ "visual.blocks.18.norm1.bias": "model-00001-of-00003.safetensors",
473
+ "visual.blocks.18.norm1.weight": "model-00001-of-00003.safetensors",
474
+ "visual.blocks.18.norm2.bias": "model-00001-of-00003.safetensors",
475
+ "visual.blocks.18.norm2.weight": "model-00001-of-00003.safetensors",
476
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00003.safetensors",
477
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00003.safetensors",
478
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00003.safetensors",
479
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00003.safetensors",
480
+ "visual.blocks.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
481
+ "visual.blocks.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
482
+ "visual.blocks.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
483
+ "visual.blocks.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
484
+ "visual.blocks.19.norm1.bias": "model-00001-of-00003.safetensors",
485
+ "visual.blocks.19.norm1.weight": "model-00001-of-00003.safetensors",
486
+ "visual.blocks.19.norm2.bias": "model-00001-of-00003.safetensors",
487
+ "visual.blocks.19.norm2.weight": "model-00001-of-00003.safetensors",
488
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00003.safetensors",
489
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00003.safetensors",
490
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00003.safetensors",
491
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00003.safetensors",
492
+ "visual.blocks.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
493
+ "visual.blocks.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
494
+ "visual.blocks.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
495
+ "visual.blocks.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
496
+ "visual.blocks.2.norm1.bias": "model-00001-of-00003.safetensors",
497
+ "visual.blocks.2.norm1.weight": "model-00001-of-00003.safetensors",
498
+ "visual.blocks.2.norm2.bias": "model-00001-of-00003.safetensors",
499
+ "visual.blocks.2.norm2.weight": "model-00001-of-00003.safetensors",
500
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00003.safetensors",
501
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00003.safetensors",
502
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00003.safetensors",
503
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00003.safetensors",
504
+ "visual.blocks.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
505
+ "visual.blocks.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
506
+ "visual.blocks.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
507
+ "visual.blocks.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
508
+ "visual.blocks.20.norm1.bias": "model-00001-of-00003.safetensors",
509
+ "visual.blocks.20.norm1.weight": "model-00001-of-00003.safetensors",
510
+ "visual.blocks.20.norm2.bias": "model-00001-of-00003.safetensors",
511
+ "visual.blocks.20.norm2.weight": "model-00001-of-00003.safetensors",
512
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00003.safetensors",
513
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00003.safetensors",
514
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00003.safetensors",
515
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00003.safetensors",
516
+ "visual.blocks.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
517
+ "visual.blocks.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
518
+ "visual.blocks.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
519
+ "visual.blocks.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
520
+ "visual.blocks.21.norm1.bias": "model-00001-of-00003.safetensors",
521
+ "visual.blocks.21.norm1.weight": "model-00001-of-00003.safetensors",
522
+ "visual.blocks.21.norm2.bias": "model-00001-of-00003.safetensors",
523
+ "visual.blocks.21.norm2.weight": "model-00001-of-00003.safetensors",
524
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00003.safetensors",
525
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00003.safetensors",
526
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00003.safetensors",
527
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00003.safetensors",
528
+ "visual.blocks.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
529
+ "visual.blocks.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
530
+ "visual.blocks.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
531
+ "visual.blocks.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
532
+ "visual.blocks.22.norm1.bias": "model-00001-of-00003.safetensors",
533
+ "visual.blocks.22.norm1.weight": "model-00001-of-00003.safetensors",
534
+ "visual.blocks.22.norm2.bias": "model-00001-of-00003.safetensors",
535
+ "visual.blocks.22.norm2.weight": "model-00001-of-00003.safetensors",
536
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00003.safetensors",
537
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00003.safetensors",
538
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00003.safetensors",
539
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00003.safetensors",
540
+ "visual.blocks.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
541
+ "visual.blocks.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
542
+ "visual.blocks.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
543
+ "visual.blocks.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
544
+ "visual.blocks.23.norm1.bias": "model-00001-of-00003.safetensors",
545
+ "visual.blocks.23.norm1.weight": "model-00001-of-00003.safetensors",
546
+ "visual.blocks.23.norm2.bias": "model-00001-of-00003.safetensors",
547
+ "visual.blocks.23.norm2.weight": "model-00001-of-00003.safetensors",
548
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00003.safetensors",
549
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00003.safetensors",
550
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00003.safetensors",
551
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00003.safetensors",
552
+ "visual.blocks.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
553
+ "visual.blocks.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
554
+ "visual.blocks.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
555
+ "visual.blocks.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
556
+ "visual.blocks.24.norm1.bias": "model-00001-of-00003.safetensors",
557
+ "visual.blocks.24.norm1.weight": "model-00001-of-00003.safetensors",
558
+ "visual.blocks.24.norm2.bias": "model-00001-of-00003.safetensors",
559
+ "visual.blocks.24.norm2.weight": "model-00001-of-00003.safetensors",
560
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00003.safetensors",
561
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00003.safetensors",
562
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00003.safetensors",
563
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00003.safetensors",
564
+ "visual.blocks.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
565
+ "visual.blocks.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
566
+ "visual.blocks.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
567
+ "visual.blocks.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
568
+ "visual.blocks.25.norm1.bias": "model-00001-of-00003.safetensors",
569
+ "visual.blocks.25.norm1.weight": "model-00001-of-00003.safetensors",
570
+ "visual.blocks.25.norm2.bias": "model-00001-of-00003.safetensors",
571
+ "visual.blocks.25.norm2.weight": "model-00001-of-00003.safetensors",
572
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00003.safetensors",
573
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00003.safetensors",
574
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00003.safetensors",
575
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00003.safetensors",
576
+ "visual.blocks.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
577
+ "visual.blocks.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
578
+ "visual.blocks.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
579
+ "visual.blocks.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
580
+ "visual.blocks.26.norm1.bias": "model-00001-of-00003.safetensors",
581
+ "visual.blocks.26.norm1.weight": "model-00001-of-00003.safetensors",
582
+ "visual.blocks.26.norm2.bias": "model-00001-of-00003.safetensors",
583
+ "visual.blocks.26.norm2.weight": "model-00001-of-00003.safetensors",
584
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00003.safetensors",
585
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00003.safetensors",
586
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00003.safetensors",
587
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00003.safetensors",
588
+ "visual.blocks.27.mlp.fc1.bias": "model-00001-of-00003.safetensors",
589
+ "visual.blocks.27.mlp.fc1.weight": "model-00001-of-00003.safetensors",
590
+ "visual.blocks.27.mlp.fc2.bias": "model-00001-of-00003.safetensors",
591
+ "visual.blocks.27.mlp.fc2.weight": "model-00001-of-00003.safetensors",
592
+ "visual.blocks.27.norm1.bias": "model-00001-of-00003.safetensors",
593
+ "visual.blocks.27.norm1.weight": "model-00001-of-00003.safetensors",
594
+ "visual.blocks.27.norm2.bias": "model-00001-of-00003.safetensors",
595
+ "visual.blocks.27.norm2.weight": "model-00001-of-00003.safetensors",
596
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00003.safetensors",
597
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00003.safetensors",
598
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00003.safetensors",
599
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00003.safetensors",
600
+ "visual.blocks.28.mlp.fc1.bias": "model-00001-of-00003.safetensors",
601
+ "visual.blocks.28.mlp.fc1.weight": "model-00001-of-00003.safetensors",
602
+ "visual.blocks.28.mlp.fc2.bias": "model-00001-of-00003.safetensors",
603
+ "visual.blocks.28.mlp.fc2.weight": "model-00001-of-00003.safetensors",
604
+ "visual.blocks.28.norm1.bias": "model-00001-of-00003.safetensors",
605
+ "visual.blocks.28.norm1.weight": "model-00001-of-00003.safetensors",
606
+ "visual.blocks.28.norm2.bias": "model-00001-of-00003.safetensors",
607
+ "visual.blocks.28.norm2.weight": "model-00001-of-00003.safetensors",
608
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00003.safetensors",
609
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00003.safetensors",
610
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00003.safetensors",
611
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00003.safetensors",
612
+ "visual.blocks.29.mlp.fc1.bias": "model-00001-of-00003.safetensors",
613
+ "visual.blocks.29.mlp.fc1.weight": "model-00001-of-00003.safetensors",
614
+ "visual.blocks.29.mlp.fc2.bias": "model-00001-of-00003.safetensors",
615
+ "visual.blocks.29.mlp.fc2.weight": "model-00001-of-00003.safetensors",
616
+ "visual.blocks.29.norm1.bias": "model-00001-of-00003.safetensors",
617
+ "visual.blocks.29.norm1.weight": "model-00001-of-00003.safetensors",
618
+ "visual.blocks.29.norm2.bias": "model-00001-of-00003.safetensors",
619
+ "visual.blocks.29.norm2.weight": "model-00001-of-00003.safetensors",
620
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00003.safetensors",
621
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00003.safetensors",
622
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00003.safetensors",
623
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00003.safetensors",
624
+ "visual.blocks.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
625
+ "visual.blocks.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
626
+ "visual.blocks.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
627
+ "visual.blocks.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
628
+ "visual.blocks.3.norm1.bias": "model-00001-of-00003.safetensors",
629
+ "visual.blocks.3.norm1.weight": "model-00001-of-00003.safetensors",
630
+ "visual.blocks.3.norm2.bias": "model-00001-of-00003.safetensors",
631
+ "visual.blocks.3.norm2.weight": "model-00001-of-00003.safetensors",
632
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00003.safetensors",
633
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00003.safetensors",
634
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00003.safetensors",
635
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00003.safetensors",
636
+ "visual.blocks.30.mlp.fc1.bias": "model-00001-of-00003.safetensors",
637
+ "visual.blocks.30.mlp.fc1.weight": "model-00001-of-00003.safetensors",
638
+ "visual.blocks.30.mlp.fc2.bias": "model-00001-of-00003.safetensors",
639
+ "visual.blocks.30.mlp.fc2.weight": "model-00001-of-00003.safetensors",
640
+ "visual.blocks.30.norm1.bias": "model-00001-of-00003.safetensors",
641
+ "visual.blocks.30.norm1.weight": "model-00001-of-00003.safetensors",
642
+ "visual.blocks.30.norm2.bias": "model-00001-of-00003.safetensors",
643
+ "visual.blocks.30.norm2.weight": "model-00001-of-00003.safetensors",
644
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00003.safetensors",
645
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00003.safetensors",
646
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00003.safetensors",
647
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00003.safetensors",
648
+ "visual.blocks.31.mlp.fc1.bias": "model-00001-of-00003.safetensors",
649
+ "visual.blocks.31.mlp.fc1.weight": "model-00001-of-00003.safetensors",
650
+ "visual.blocks.31.mlp.fc2.bias": "model-00001-of-00003.safetensors",
651
+ "visual.blocks.31.mlp.fc2.weight": "model-00001-of-00003.safetensors",
652
+ "visual.blocks.31.norm1.bias": "model-00001-of-00003.safetensors",
653
+ "visual.blocks.31.norm1.weight": "model-00001-of-00003.safetensors",
654
+ "visual.blocks.31.norm2.bias": "model-00001-of-00003.safetensors",
655
+ "visual.blocks.31.norm2.weight": "model-00001-of-00003.safetensors",
656
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00003.safetensors",
657
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00003.safetensors",
658
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00003.safetensors",
659
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00003.safetensors",
660
+ "visual.blocks.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
661
+ "visual.blocks.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
662
+ "visual.blocks.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
663
+ "visual.blocks.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
664
+ "visual.blocks.4.norm1.bias": "model-00001-of-00003.safetensors",
665
+ "visual.blocks.4.norm1.weight": "model-00001-of-00003.safetensors",
666
+ "visual.blocks.4.norm2.bias": "model-00001-of-00003.safetensors",
667
+ "visual.blocks.4.norm2.weight": "model-00001-of-00003.safetensors",
668
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00003.safetensors",
669
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00003.safetensors",
670
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00003.safetensors",
671
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00003.safetensors",
672
+ "visual.blocks.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
673
+ "visual.blocks.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
674
+ "visual.blocks.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
675
+ "visual.blocks.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
676
+ "visual.blocks.5.norm1.bias": "model-00001-of-00003.safetensors",
677
+ "visual.blocks.5.norm1.weight": "model-00001-of-00003.safetensors",
678
+ "visual.blocks.5.norm2.bias": "model-00001-of-00003.safetensors",
679
+ "visual.blocks.5.norm2.weight": "model-00001-of-00003.safetensors",
680
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00003.safetensors",
681
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00003.safetensors",
682
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00003.safetensors",
683
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00003.safetensors",
684
+ "visual.blocks.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
685
+ "visual.blocks.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
686
+ "visual.blocks.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
687
+ "visual.blocks.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
688
+ "visual.blocks.6.norm1.bias": "model-00001-of-00003.safetensors",
689
+ "visual.blocks.6.norm1.weight": "model-00001-of-00003.safetensors",
690
+ "visual.blocks.6.norm2.bias": "model-00001-of-00003.safetensors",
691
+ "visual.blocks.6.norm2.weight": "model-00001-of-00003.safetensors",
692
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00003.safetensors",
693
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00003.safetensors",
694
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00003.safetensors",
695
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00003.safetensors",
696
+ "visual.blocks.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
697
+ "visual.blocks.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
698
+ "visual.blocks.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
699
+ "visual.blocks.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
700
+ "visual.blocks.7.norm1.bias": "model-00001-of-00003.safetensors",
701
+ "visual.blocks.7.norm1.weight": "model-00001-of-00003.safetensors",
702
+ "visual.blocks.7.norm2.bias": "model-00001-of-00003.safetensors",
703
+ "visual.blocks.7.norm2.weight": "model-00001-of-00003.safetensors",
704
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00003.safetensors",
705
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00003.safetensors",
706
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00003.safetensors",
707
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00003.safetensors",
708
+ "visual.blocks.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
709
+ "visual.blocks.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
710
+ "visual.blocks.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
711
+ "visual.blocks.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
712
+ "visual.blocks.8.norm1.bias": "model-00001-of-00003.safetensors",
713
+ "visual.blocks.8.norm1.weight": "model-00001-of-00003.safetensors",
714
+ "visual.blocks.8.norm2.bias": "model-00001-of-00003.safetensors",
715
+ "visual.blocks.8.norm2.weight": "model-00001-of-00003.safetensors",
716
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00003.safetensors",
717
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00003.safetensors",
718
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00003.safetensors",
719
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00003.safetensors",
720
+ "visual.blocks.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
721
+ "visual.blocks.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
722
+ "visual.blocks.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
723
+ "visual.blocks.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
724
+ "visual.blocks.9.norm1.bias": "model-00001-of-00003.safetensors",
725
+ "visual.blocks.9.norm1.weight": "model-00001-of-00003.safetensors",
726
+ "visual.blocks.9.norm2.bias": "model-00001-of-00003.safetensors",
727
+ "visual.blocks.9.norm2.weight": "model-00001-of-00003.safetensors",
728
+ "visual.merger.ln_q.bias": "model-00001-of-00003.safetensors",
729
+ "visual.merger.ln_q.weight": "model-00001-of-00003.safetensors",
730
+ "visual.merger.mlp.0.bias": "model-00001-of-00003.safetensors",
731
+ "visual.merger.mlp.0.weight": "model-00001-of-00003.safetensors",
732
+ "visual.merger.mlp.2.bias": "model-00001-of-00003.safetensors",
733
+ "visual.merger.mlp.2.weight": "model-00001-of-00003.safetensors",
734
+ "visual.patch_embed.proj.weight": "model-00001-of-00003.safetensors"
735
+ }
736
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "min_pixels": 3136,
3
+ "max_pixels": 12845056,
4
+ "patch_size": 14,
5
+ "temporal_patch_size": 2,
6
+ "merge_size": 2,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "image_processor_type": "Qwen2VLImageProcessor",
18
+ "processor_class": "Qwen2VLProcessor"
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "model_max_length": 32768,
138
+ "pad_token": "<|endoftext|>",
139
+ "padding_side": "left",
140
+ "split_special_tokens": false,
141
+ "tokenizer_class": "Qwen2Tokenizer",
142
+ "unk_token": null
143
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff