vqgan-clp / predict.py
AlexKM's picture
Upload predict.py
6be96ac
raw
history blame
22.1 kB
"""
clone the following repo if haven't
- git clone 'https://github.com/openai/CLIP'
- git clone 'https://github.com/CompVis/taming-transformers'
"""
import sys
import tempfile
import warnings
import numpy as np
from pathlib import Path
import argparse
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from torch.cuda import get_device_properties
from omegaconf import OmegaConf
from torch_optimizer import DiffGrad, AdamP, RAdam
import kornia.augmentation as K
import imageio
from tqdm import tqdm
import cog
from CLIP import clip
from PIL import ImageFile, Image, PngImagePlugin, ImageChops
sys.path.append("taming-transformers")
from taming.models import cond_transformer, vqgan
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.backends.cudnn.benchmark = False
warnings.filterwarnings("ignore")
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
(input,) = ctx.saved_tensors
return (
grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0),
None,
None,
)
replace_grad = ReplaceGrad.apply
clamp_with_grad = ClampWithGrad.apply
class Predictor(cog.Predictor):
def setup(self):
self.device = torch.device("cuda:0")
# Check for GPU and reduce the default image size if low VRAM
default_image_size = 512 # >8GB VRAM
if not torch.cuda.is_available():
default_image_size = 256 # no GPU found
elif (
get_device_properties(0).total_memory <= 2 ** 33
): # 2 ** 33 = 8,589,934,592 bytes = 8 GB
default_image_size = 318 # <8GB VRAM
self.args = get_args()
self.args.size = [default_image_size, default_image_size]
self.model = load_vqgan_model(
self.args.vqgan_config, self.args.vqgan_checkpoint
).to(self.device)
print("Model loaded!")
jit = True if float(torch.__version__[:3]) < 1.8 else False
self.perceptor = (
clip.load(self.args.clip_model, jit=jit)[0]
.eval()
.requires_grad_(False)
.to(self.device)
)
cut_size = self.perceptor.visual.input_resolution
# choose latest Cutout class as default
self.make_cutouts = MakeCutouts(
cut_size, self.args.cutn, self.args, cut_pow=self.args.cut_pow
)
self.z_min = self.model.quantize.embedding.weight.min(dim=0).values[
None, :, None, None
]
self.z_max = self.model.quantize.embedding.weight.max(dim=0).values[
None, :, None, None
]
print("Using device:", self.device)
print("Optimising using:", self.args.optimiser)
@cog.input(
"image",
type=Path,
default=None,
help="Initial Image, optional. When the image is provided, the prompts will be used to create some 'style transfer' effect",
)
@cog.input(
"prompts",
type=str,
default="A cute, smiling, Nerdy Rodent",
help="Prompts for generating images. Supports multiple prompts separated by pipe | ",
)
@cog.input(
"iterations",
type=int,
default=300,
help="total iterations for generating images. Set to lower iterations when initial image is uploaded",
)
@cog.input(
"display_frequency",
type=int,
default=20,
help="display frequency for intermediate generated images",
)
def predict(self, image, prompts, iterations, display_frequency):
# gumbel is False
e_dim = self.model.quantize.e_dim
n_toks = self.model.quantize.n_e
f = 2 ** (self.model.decoder.num_resolutions - 1)
toksX, toksY = self.args.size[0] // f, self.args.size[1] // f
sideX, sideY = toksX * f, toksY * f
if image is not None:
self.args.init_image = str(image)
self.args.step_size = 0.25
if "http" in self.args.init_image:
img = Image.open(urlopen(self.args.init_image))
else:
img = Image.open(self.args.init_image)
pil_image = img.convert("RGB")
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
pil_tensor = TF.to_tensor(pil_image)
z, *_ = self.model.encode(pil_tensor.to(self.device).unsqueeze(0) * 2 - 1)
else:
one_hot = F.one_hot(
torch.randint(n_toks, [toksY * toksX], device=self.device), n_toks
).float()
# gumbel is False
z = one_hot @ self.model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
z_orig = z.clone()
z.requires_grad_(True)
self.opt = get_opt(self.args.optimiser, self.args.step_size, z)
self.args.display_freq = display_frequency
self.args.max_iterations = iterations
story_phrases = [phrase.strip() for phrase in prompts.split("^")]
# Make a list of all phrases
all_phrases = []
for phrase in story_phrases:
all_phrases.append(phrase.split("|"))
# First phrase
prompts = all_phrases[0]
pMs = []
for prompt in prompts:
txt, weight, stop = split_prompt(prompt)
embed = self.perceptor.encode_text(
clip.tokenize(txt).to(self.device)
).float()
pMs.append(Prompt(embed, weight, stop).to(self.device))
# args.image_prompts is None for now
# args.noise_prompt_seeds, args.noise_prompt_weights None for now
print(f"Using text prompts: {prompts}")
if self.args.init_image:
print(f"Using initial image: {self.args.init_image}")
if self.args.seed is None:
seed = torch.seed()
else:
seed = self.args.seed
torch.manual_seed(seed)
print(f"Using seed: {seed}")
i = 0 # Iteration counter
# j = 0 # Zoom video frame counter
# p = 1 # Phrase counter
# smoother = 0 # Smoother counter
# this_video_frame = 0 # for video styling
out_path = Path(tempfile.mkdtemp()) / "out.png"
# Do it
for i in range(1, self.args.max_iterations + 1):
self.opt.zero_grad(set_to_none=True)
lossAll = ascend_txt(
i, z, self.perceptor, self.args, self.model, self.make_cutouts, pMs
)
if i % self.args.display_freq == 0 and not i == self.args.max_iterations:
yield checkin(i, lossAll, prompts, self.model, z, out_path)
loss = sum(lossAll)
loss.backward()
self.opt.step()
# with torch.no_grad():
with torch.inference_mode():
z.copy_(z.maximum(self.z_min).minimum(self.z_max))
# Ready to stop yet?
if i == self.args.max_iterations:
yield checkin(i, lossAll, prompts, self.model, z, out_path)
@torch.inference_mode()
def checkin(i, losses, prompts, model, z, outpath):
losses_str = ", ".join(f"{loss.item():g}" for loss in losses)
tqdm.write(f"i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}")
out = synth(z, model)
info = PngImagePlugin.PngInfo()
info.add_text("comment", f"{prompts}")
TF.to_pil_image(out[0].cpu()).save(str(outpath), pnginfo=info)
return outpath
def get_args():
vq_parser = argparse.ArgumentParser(description="Image generation using VQGAN+CLIP")
# Add the arguments
vq_parser.add_argument(
"-p", "--prompts", type=str, help="Text prompts", default=None, dest="prompts"
)
vq_parser.add_argument(
"-ip",
"--image_prompts",
type=str,
help="Image prompts / target image",
default=[],
dest="image_prompts",
)
vq_parser.add_argument(
"-i",
"--iterations",
type=int,
help="Number of iterations",
default=500,
dest="max_iterations",
)
vq_parser.add_argument(
"-se",
"--save_every",
type=int,
help="Save image iterations",
default=50,
dest="display_freq",
)
vq_parser.add_argument(
"-s",
"--size",
nargs=2,
type=int,
help="Image size (width height) (default: %(default)s)",
dest="size",
)
vq_parser.add_argument(
"-ii",
"--init_image",
type=str,
help="Initial image",
default=None,
dest="init_image",
)
vq_parser.add_argument(
"-in",
"--init_noise",
type=str,
help="Initial noise image (pixels or gradient)",
default=None,
dest="init_noise",
)
vq_parser.add_argument(
"-iw",
"--init_weight",
type=float,
help="Initial weight",
default=0.0,
dest="init_weight",
)
vq_parser.add_argument(
"-m",
"--clip_model",
type=str,
help="CLIP model (e.g. ViT-B/32, ViT-B/16)",
default="ViT-B/32",
dest="clip_model",
)
vq_parser.add_argument(
"-conf",
"--vqgan_config",
type=str,
help="VQGAN config",
default=f"checkpoints/vqgan_imagenet_f16_16384.yaml",
dest="vqgan_config",
)
vq_parser.add_argument(
"-ckpt",
"--vqgan_checkpoint",
type=str,
help="VQGAN checkpoint",
default=f"checkpoints/vqgan_imagenet_f16_16384.ckpt",
dest="vqgan_checkpoint",
)
vq_parser.add_argument(
"-nps",
"--noise_prompt_seeds",
nargs="*",
type=int,
help="Noise prompt seeds",
default=[],
dest="noise_prompt_seeds",
)
vq_parser.add_argument(
"-npw",
"--noise_prompt_weights",
nargs="*",
type=float,
help="Noise prompt weights",
default=[],
dest="noise_prompt_weights",
)
vq_parser.add_argument(
"-lr",
"--learning_rate",
type=float,
help="Learning rate",
default=0.1,
dest="step_size",
)
vq_parser.add_argument(
"-cutm",
"--cut_method",
type=str,
help="Cut method",
choices=["original", "updated", "nrupdated", "updatedpooling", "latest"],
default="latest",
dest="cut_method",
)
vq_parser.add_argument(
"-cuts", "--num_cuts", type=int, help="Number of cuts", default=32, dest="cutn"
)
vq_parser.add_argument(
"-cutp",
"--cut_power",
type=float,
help="Cut power",
default=1.0,
dest="cut_pow",
)
vq_parser.add_argument(
"-sd", "--seed", type=int, help="Seed", default=None, dest="seed"
)
vq_parser.add_argument(
"-opt",
"--optimiser",
type=str,
help="Optimiser",
choices=[
"Adam",
"AdamW",
"Adagrad",
"Adamax",
"DiffGrad",
"AdamP",
"RAdam",
"RMSprop",
],
default="Adam",
dest="optimiser",
)
vq_parser.add_argument(
"-o",
"--output",
type=str,
help="Output filename",
default="output.png",
dest="output",
)
vq_parser.add_argument(
"-vid",
"--video",
action="store_true",
help="Create video frames?",
dest="make_video",
)
vq_parser.add_argument(
"-zvid",
"--zoom_video",
action="store_true",
help="Create zoom video?",
dest="make_zoom_video",
)
vq_parser.add_argument(
"-zs",
"--zoom_start",
type=int,
help="Zoom start iteration",
default=0,
dest="zoom_start",
)
vq_parser.add_argument(
"-zse",
"--zoom_save_every",
type=int,
help="Save zoom image iterations",
default=10,
dest="zoom_frequency",
)
vq_parser.add_argument(
"-zsc",
"--zoom_scale",
type=float,
help="Zoom scale %",
default=0.99,
dest="zoom_scale",
)
vq_parser.add_argument(
"-zsx",
"--zoom_shift_x",
type=int,
help="Zoom shift x (left/right) amount in pixels",
default=0,
dest="zoom_shift_x",
)
vq_parser.add_argument(
"-zsy",
"--zoom_shift_y",
type=int,
help="Zoom shift y (up/down) amount in pixels",
default=0,
dest="zoom_shift_y",
)
vq_parser.add_argument(
"-cpe",
"--change_prompt_every",
type=int,
help="Prompt change frequency",
default=0,
dest="prompt_frequency",
)
vq_parser.add_argument(
"-vl",
"--video_length",
type=float,
help="Video length in seconds (not interpolated)",
default=10,
dest="video_length",
)
vq_parser.add_argument(
"-ofps",
"--output_video_fps",
type=float,
help="Create an interpolated video (Nvidia GPU only) with this fps (min 10. best set to 30 or 60)",
default=30,
dest="output_video_fps",
)
vq_parser.add_argument(
"-ifps",
"--input_video_fps",
type=float,
help="When creating an interpolated video, use this as the input fps to interpolate from (>0 & <ofps)",
default=15,
dest="input_video_fps",
)
vq_parser.add_argument(
"-d",
"--deterministic",
action="store_true",
help="Enable cudnn.deterministic?",
dest="cudnn_determinism",
)
vq_parser.add_argument(
"-aug",
"--augments",
nargs="+",
action="append",
type=str,
choices=["Ji", "Sh", "Gn", "Pe", "Ro", "Af", "Et", "Ts", "Cr", "Er", "Re"],
help="Enabled augments (latest vut method only)",
default=[["Af", "Pe", "Ji", "Er"]],
dest="augments",
)
vq_parser.add_argument(
"-vsd",
"--video_style_dir",
type=str,
help="Directory with video frames to style",
default=None,
dest="video_style_dir",
)
vq_parser.add_argument(
"-cd",
"--cuda_device",
type=str,
help="Cuda device to use",
default="cuda:0",
dest="cuda_device",
)
# Execute the parse_args() method
args = vq_parser.parse_args("")
return args
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
# config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
del model.loss
return model
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, args, cut_pow=1.0):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow # not used with pooling
# Pick your own augments & their order
augment_list = []
for item in args.augments[0]:
if item == "Ji":
augment_list.append(
K.ColorJitter(
brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1, p=0.7
)
)
elif item == "Sh":
augment_list.append(K.RandomSharpness(sharpness=0.3, p=0.5))
elif item == "Gn":
augment_list.append(K.RandomGaussianNoise(mean=0.0, std=1.0, p=0.5))
elif item == "Pe":
augment_list.append(K.RandomPerspective(distortion_scale=0.7, p=0.7))
elif item == "Ro":
augment_list.append(K.RandomRotation(degrees=15, p=0.7))
elif item == "Af":
augment_list.append(
K.RandomAffine(
degrees=15,
translate=0.1,
shear=5,
p=0.7,
padding_mode="zeros",
keepdim=True,
)
) # border, reflection, zeros
elif item == "Et":
augment_list.append(K.RandomElasticTransform(p=0.7))
elif item == "Ts":
augment_list.append(
K.RandomThinPlateSpline(scale=0.8, same_on_batch=True, p=0.7)
)
elif item == "Cr":
augment_list.append(
K.RandomCrop(
size=(self.cut_size, self.cut_size),
pad_if_needed=True,
padding_mode="reflect",
p=0.5,
)
)
elif item == "Er":
augment_list.append(
K.RandomErasing(
scale=(0.1, 0.4),
ratio=(0.3, 1 / 0.3),
same_on_batch=True,
p=0.7,
)
)
elif item == "Re":
augment_list.append(
K.RandomResizedCrop(
size=(self.cut_size, self.cut_size),
scale=(0.1, 1),
ratio=(0.75, 1.333),
cropping_mode="resample",
p=0.5,
)
)
self.augs = nn.Sequential(*augment_list)
self.noise_fac = 0.1
# self.noise_fac = False
# Uncomment if you like seeing the list ;)
# print(augment_list)
# Pooling
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
def forward(self, input):
cutouts = []
for _ in range(self.cutn):
# Use Pooling
cutout = (self.av_pool(input) + self.max_pool(input)) / 2
cutouts.append(cutout)
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def get_opt(opt_name, opt_lr, z):
if opt_name == "Adam":
opt = optim.Adam([z], lr=opt_lr) # LR=0.1 (Default)
elif opt_name == "AdamW":
opt = optim.AdamW([z], lr=opt_lr)
elif opt_name == "Adagrad":
opt = optim.Adagrad([z], lr=opt_lr)
elif opt_name == "Adamax":
opt = optim.Adamax([z], lr=opt_lr)
elif opt_name == "DiffGrad":
opt = DiffGrad(
[z], lr=opt_lr, eps=1e-9, weight_decay=1e-9
) # NR: Playing for reasons
elif opt_name == "AdamP":
opt = AdamP([z], lr=opt_lr)
elif opt_name == "RAdam":
opt = RAdam([z], lr=opt_lr)
elif opt_name == "RMSprop":
opt = optim.RMSprop([z], lr=opt_lr)
else:
print("Unknown optimiser. Are choices broken?")
opt = optim.Adam([z], lr=opt_lr)
return opt
def ascend_txt(i, z, perceptor, args, model, make_cutouts, pMs):
normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
)
out = synth(z, model)
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
result = []
if args.init_weight:
# result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
result.append(
F.mse_loss(z, torch.zeros_like(z_orig))
* ((1 / torch.tensor(i * 2 + 1)) * args.init_weight)
/ 2
)
for prompt in pMs:
result.append(prompt(iii))
if args.make_video:
img = np.array(
out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8)
)[:, :, :]
img = np.transpose(img, (1, 2, 0))
imageio.imwrite("steps/" + str(i) + ".png", np.array(img))
return result
def synth(z, model):
# gumbel is False
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(
3, 1
)
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
def vector_quantize(x, codebook):
d = (
x.pow(2).sum(dim=-1, keepdim=True)
+ codebook.pow(2).sum(dim=1)
- 2 * x @ codebook.T
)
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
def split_prompt(prompt):
vals = prompt.rsplit(":", 2)
vals = vals + ["", "1", "-inf"][len(vals) :]
return vals[0], float(vals[1]), float(vals[2])
class Prompt(nn.Module):
def __init__(self, embed, weight=1.0, stop=float("-inf")):
super().__init__()
self.register_buffer("embed", embed)
self.register_buffer("weight", torch.as_tensor(weight))
self.register_buffer("stop", torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return (
self.weight.abs()
* replace_grad(dists, torch.maximum(dists, self.stop)).mean()
)