Upload predict.py
Browse files- predict.py +730 -0
predict.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
clone the following repo if haven't
|
3 |
+
- git clone 'https://github.com/openai/CLIP'
|
4 |
+
- git clone 'https://github.com/CompVis/taming-transformers'
|
5 |
+
"""
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import tempfile
|
9 |
+
import warnings
|
10 |
+
import numpy as np
|
11 |
+
from pathlib import Path
|
12 |
+
import argparse
|
13 |
+
import torch
|
14 |
+
from torch import nn, optim
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from torchvision import transforms
|
17 |
+
from torchvision.transforms import functional as TF
|
18 |
+
from torch.cuda import get_device_properties
|
19 |
+
from omegaconf import OmegaConf
|
20 |
+
from torch_optimizer import DiffGrad, AdamP, RAdam
|
21 |
+
import kornia.augmentation as K
|
22 |
+
import imageio
|
23 |
+
from tqdm import tqdm
|
24 |
+
import cog
|
25 |
+
from CLIP import clip
|
26 |
+
from PIL import ImageFile, Image, PngImagePlugin, ImageChops
|
27 |
+
|
28 |
+
sys.path.append("taming-transformers")
|
29 |
+
from taming.models import cond_transformer, vqgan
|
30 |
+
|
31 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
32 |
+
torch.backends.cudnn.benchmark = False
|
33 |
+
warnings.filterwarnings("ignore")
|
34 |
+
|
35 |
+
|
36 |
+
class ReplaceGrad(torch.autograd.Function):
|
37 |
+
@staticmethod
|
38 |
+
def forward(ctx, x_forward, x_backward):
|
39 |
+
ctx.shape = x_backward.shape
|
40 |
+
return x_forward
|
41 |
+
|
42 |
+
@staticmethod
|
43 |
+
def backward(ctx, grad_in):
|
44 |
+
return None, grad_in.sum_to_size(ctx.shape)
|
45 |
+
|
46 |
+
|
47 |
+
class ClampWithGrad(torch.autograd.Function):
|
48 |
+
@staticmethod
|
49 |
+
def forward(ctx, input, min, max):
|
50 |
+
ctx.min = min
|
51 |
+
ctx.max = max
|
52 |
+
ctx.save_for_backward(input)
|
53 |
+
return input.clamp(min, max)
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def backward(ctx, grad_in):
|
57 |
+
(input,) = ctx.saved_tensors
|
58 |
+
return (
|
59 |
+
grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0),
|
60 |
+
None,
|
61 |
+
None,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
replace_grad = ReplaceGrad.apply
|
66 |
+
clamp_with_grad = ClampWithGrad.apply
|
67 |
+
|
68 |
+
|
69 |
+
class Predictor(cog.Predictor):
|
70 |
+
def setup(self):
|
71 |
+
self.device = torch.device("cuda:0")
|
72 |
+
# Check for GPU and reduce the default image size if low VRAM
|
73 |
+
default_image_size = 512 # >8GB VRAM
|
74 |
+
if not torch.cuda.is_available():
|
75 |
+
default_image_size = 256 # no GPU found
|
76 |
+
elif (
|
77 |
+
get_device_properties(0).total_memory <= 2 ** 33
|
78 |
+
): # 2 ** 33 = 8,589,934,592 bytes = 8 GB
|
79 |
+
default_image_size = 318 # <8GB VRAM
|
80 |
+
|
81 |
+
self.args = get_args()
|
82 |
+
self.args.size = [default_image_size, default_image_size]
|
83 |
+
self.model = load_vqgan_model(
|
84 |
+
self.args.vqgan_config, self.args.vqgan_checkpoint
|
85 |
+
).to(self.device)
|
86 |
+
print("Model loaded!")
|
87 |
+
jit = True if float(torch.__version__[:3]) < 1.8 else False
|
88 |
+
self.perceptor = (
|
89 |
+
clip.load(self.args.clip_model, jit=jit)[0]
|
90 |
+
.eval()
|
91 |
+
.requires_grad_(False)
|
92 |
+
.to(self.device)
|
93 |
+
)
|
94 |
+
cut_size = self.perceptor.visual.input_resolution
|
95 |
+
# choose latest Cutout class as default
|
96 |
+
self.make_cutouts = MakeCutouts(
|
97 |
+
cut_size, self.args.cutn, self.args, cut_pow=self.args.cut_pow
|
98 |
+
)
|
99 |
+
|
100 |
+
self.z_min = self.model.quantize.embedding.weight.min(dim=0).values[
|
101 |
+
None, :, None, None
|
102 |
+
]
|
103 |
+
self.z_max = self.model.quantize.embedding.weight.max(dim=0).values[
|
104 |
+
None, :, None, None
|
105 |
+
]
|
106 |
+
|
107 |
+
print("Using device:", self.device)
|
108 |
+
print("Optimising using:", self.args.optimiser)
|
109 |
+
|
110 |
+
@cog.input(
|
111 |
+
"image",
|
112 |
+
type=Path,
|
113 |
+
default=None,
|
114 |
+
help="Initial Image, optional. When the image is provided, the prompts will be used to create some 'style transfer' effect",
|
115 |
+
)
|
116 |
+
@cog.input(
|
117 |
+
"prompts",
|
118 |
+
type=str,
|
119 |
+
default="A cute, smiling, Nerdy Rodent",
|
120 |
+
help="Prompts for generating images. Supports multiple prompts separated by pipe | ",
|
121 |
+
)
|
122 |
+
@cog.input(
|
123 |
+
"iterations",
|
124 |
+
type=int,
|
125 |
+
default=300,
|
126 |
+
help="total iterations for generating images. Set to lower iterations when initial image is uploaded",
|
127 |
+
)
|
128 |
+
@cog.input(
|
129 |
+
"display_frequency",
|
130 |
+
type=int,
|
131 |
+
default=20,
|
132 |
+
help="display frequency for intermediate generated images",
|
133 |
+
)
|
134 |
+
def predict(self, image, prompts, iterations, display_frequency):
|
135 |
+
# gumbel is False
|
136 |
+
e_dim = self.model.quantize.e_dim
|
137 |
+
n_toks = self.model.quantize.n_e
|
138 |
+
f = 2 ** (self.model.decoder.num_resolutions - 1)
|
139 |
+
toksX, toksY = self.args.size[0] // f, self.args.size[1] // f
|
140 |
+
sideX, sideY = toksX * f, toksY * f
|
141 |
+
|
142 |
+
if image is not None:
|
143 |
+
self.args.init_image = str(image)
|
144 |
+
self.args.step_size = 0.25
|
145 |
+
if "http" in self.args.init_image:
|
146 |
+
img = Image.open(urlopen(self.args.init_image))
|
147 |
+
else:
|
148 |
+
img = Image.open(self.args.init_image)
|
149 |
+
pil_image = img.convert("RGB")
|
150 |
+
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
|
151 |
+
pil_tensor = TF.to_tensor(pil_image)
|
152 |
+
z, *_ = self.model.encode(pil_tensor.to(self.device).unsqueeze(0) * 2 - 1)
|
153 |
+
else:
|
154 |
+
one_hot = F.one_hot(
|
155 |
+
torch.randint(n_toks, [toksY * toksX], device=self.device), n_toks
|
156 |
+
).float()
|
157 |
+
# gumbel is False
|
158 |
+
z = one_hot @ self.model.quantize.embedding.weight
|
159 |
+
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
|
160 |
+
|
161 |
+
z_orig = z.clone()
|
162 |
+
z.requires_grad_(True)
|
163 |
+
|
164 |
+
self.opt = get_opt(self.args.optimiser, self.args.step_size, z)
|
165 |
+
|
166 |
+
self.args.display_freq = display_frequency
|
167 |
+
self.args.max_iterations = iterations
|
168 |
+
|
169 |
+
story_phrases = [phrase.strip() for phrase in prompts.split("^")]
|
170 |
+
|
171 |
+
# Make a list of all phrases
|
172 |
+
all_phrases = []
|
173 |
+
for phrase in story_phrases:
|
174 |
+
all_phrases.append(phrase.split("|"))
|
175 |
+
|
176 |
+
# First phrase
|
177 |
+
prompts = all_phrases[0]
|
178 |
+
|
179 |
+
pMs = []
|
180 |
+
for prompt in prompts:
|
181 |
+
txt, weight, stop = split_prompt(prompt)
|
182 |
+
embed = self.perceptor.encode_text(
|
183 |
+
clip.tokenize(txt).to(self.device)
|
184 |
+
).float()
|
185 |
+
pMs.append(Prompt(embed, weight, stop).to(self.device))
|
186 |
+
# args.image_prompts is None for now
|
187 |
+
# args.noise_prompt_seeds, args.noise_prompt_weights None for now
|
188 |
+
print(f"Using text prompts: {prompts}")
|
189 |
+
if self.args.init_image:
|
190 |
+
print(f"Using initial image: {self.args.init_image}")
|
191 |
+
|
192 |
+
if self.args.seed is None:
|
193 |
+
seed = torch.seed()
|
194 |
+
else:
|
195 |
+
seed = self.args.seed
|
196 |
+
torch.manual_seed(seed)
|
197 |
+
print(f"Using seed: {seed}")
|
198 |
+
i = 0 # Iteration counter
|
199 |
+
# j = 0 # Zoom video frame counter
|
200 |
+
# p = 1 # Phrase counter
|
201 |
+
# smoother = 0 # Smoother counter
|
202 |
+
# this_video_frame = 0 # for video styling
|
203 |
+
|
204 |
+
out_path = Path(tempfile.mkdtemp()) / "out.png"
|
205 |
+
# Do it
|
206 |
+
for i in range(1, self.args.max_iterations + 1):
|
207 |
+
self.opt.zero_grad(set_to_none=True)
|
208 |
+
lossAll = ascend_txt(
|
209 |
+
i, z, self.perceptor, self.args, self.model, self.make_cutouts, pMs
|
210 |
+
)
|
211 |
+
|
212 |
+
if i % self.args.display_freq == 0 and not i == self.args.max_iterations:
|
213 |
+
yield checkin(i, lossAll, prompts, self.model, z, out_path)
|
214 |
+
|
215 |
+
loss = sum(lossAll)
|
216 |
+
loss.backward()
|
217 |
+
self.opt.step()
|
218 |
+
|
219 |
+
# with torch.no_grad():
|
220 |
+
with torch.inference_mode():
|
221 |
+
z.copy_(z.maximum(self.z_min).minimum(self.z_max))
|
222 |
+
|
223 |
+
# Ready to stop yet?
|
224 |
+
if i == self.args.max_iterations:
|
225 |
+
yield checkin(i, lossAll, prompts, self.model, z, out_path)
|
226 |
+
|
227 |
+
|
228 |
+
@torch.inference_mode()
|
229 |
+
def checkin(i, losses, prompts, model, z, outpath):
|
230 |
+
losses_str = ", ".join(f"{loss.item():g}" for loss in losses)
|
231 |
+
tqdm.write(f"i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}")
|
232 |
+
out = synth(z, model)
|
233 |
+
info = PngImagePlugin.PngInfo()
|
234 |
+
info.add_text("comment", f"{prompts}")
|
235 |
+
TF.to_pil_image(out[0].cpu()).save(str(outpath), pnginfo=info)
|
236 |
+
return outpath
|
237 |
+
|
238 |
+
|
239 |
+
def get_args():
|
240 |
+
vq_parser = argparse.ArgumentParser(description="Image generation using VQGAN+CLIP")
|
241 |
+
|
242 |
+
# Add the arguments
|
243 |
+
vq_parser.add_argument(
|
244 |
+
"-p", "--prompts", type=str, help="Text prompts", default=None, dest="prompts"
|
245 |
+
)
|
246 |
+
vq_parser.add_argument(
|
247 |
+
"-ip",
|
248 |
+
"--image_prompts",
|
249 |
+
type=str,
|
250 |
+
help="Image prompts / target image",
|
251 |
+
default=[],
|
252 |
+
dest="image_prompts",
|
253 |
+
)
|
254 |
+
vq_parser.add_argument(
|
255 |
+
"-i",
|
256 |
+
"--iterations",
|
257 |
+
type=int,
|
258 |
+
help="Number of iterations",
|
259 |
+
default=500,
|
260 |
+
dest="max_iterations",
|
261 |
+
)
|
262 |
+
vq_parser.add_argument(
|
263 |
+
"-se",
|
264 |
+
"--save_every",
|
265 |
+
type=int,
|
266 |
+
help="Save image iterations",
|
267 |
+
default=50,
|
268 |
+
dest="display_freq",
|
269 |
+
)
|
270 |
+
vq_parser.add_argument(
|
271 |
+
"-s",
|
272 |
+
"--size",
|
273 |
+
nargs=2,
|
274 |
+
type=int,
|
275 |
+
help="Image size (width height) (default: %(default)s)",
|
276 |
+
dest="size",
|
277 |
+
)
|
278 |
+
vq_parser.add_argument(
|
279 |
+
"-ii",
|
280 |
+
"--init_image",
|
281 |
+
type=str,
|
282 |
+
help="Initial image",
|
283 |
+
default=None,
|
284 |
+
dest="init_image",
|
285 |
+
)
|
286 |
+
vq_parser.add_argument(
|
287 |
+
"-in",
|
288 |
+
"--init_noise",
|
289 |
+
type=str,
|
290 |
+
help="Initial noise image (pixels or gradient)",
|
291 |
+
default=None,
|
292 |
+
dest="init_noise",
|
293 |
+
)
|
294 |
+
vq_parser.add_argument(
|
295 |
+
"-iw",
|
296 |
+
"--init_weight",
|
297 |
+
type=float,
|
298 |
+
help="Initial weight",
|
299 |
+
default=0.0,
|
300 |
+
dest="init_weight",
|
301 |
+
)
|
302 |
+
vq_parser.add_argument(
|
303 |
+
"-m",
|
304 |
+
"--clip_model",
|
305 |
+
type=str,
|
306 |
+
help="CLIP model (e.g. ViT-B/32, ViT-B/16)",
|
307 |
+
default="ViT-B/32",
|
308 |
+
dest="clip_model",
|
309 |
+
)
|
310 |
+
vq_parser.add_argument(
|
311 |
+
"-conf",
|
312 |
+
"--vqgan_config",
|
313 |
+
type=str,
|
314 |
+
help="VQGAN config",
|
315 |
+
default=f"checkpoints/vqgan_imagenet_f16_16384.yaml",
|
316 |
+
dest="vqgan_config",
|
317 |
+
)
|
318 |
+
vq_parser.add_argument(
|
319 |
+
"-ckpt",
|
320 |
+
"--vqgan_checkpoint",
|
321 |
+
type=str,
|
322 |
+
help="VQGAN checkpoint",
|
323 |
+
default=f"checkpoints/vqgan_imagenet_f16_16384.ckpt",
|
324 |
+
dest="vqgan_checkpoint",
|
325 |
+
)
|
326 |
+
vq_parser.add_argument(
|
327 |
+
"-nps",
|
328 |
+
"--noise_prompt_seeds",
|
329 |
+
nargs="*",
|
330 |
+
type=int,
|
331 |
+
help="Noise prompt seeds",
|
332 |
+
default=[],
|
333 |
+
dest="noise_prompt_seeds",
|
334 |
+
)
|
335 |
+
vq_parser.add_argument(
|
336 |
+
"-npw",
|
337 |
+
"--noise_prompt_weights",
|
338 |
+
nargs="*",
|
339 |
+
type=float,
|
340 |
+
help="Noise prompt weights",
|
341 |
+
default=[],
|
342 |
+
dest="noise_prompt_weights",
|
343 |
+
)
|
344 |
+
vq_parser.add_argument(
|
345 |
+
"-lr",
|
346 |
+
"--learning_rate",
|
347 |
+
type=float,
|
348 |
+
help="Learning rate",
|
349 |
+
default=0.1,
|
350 |
+
dest="step_size",
|
351 |
+
)
|
352 |
+
vq_parser.add_argument(
|
353 |
+
"-cutm",
|
354 |
+
"--cut_method",
|
355 |
+
type=str,
|
356 |
+
help="Cut method",
|
357 |
+
choices=["original", "updated", "nrupdated", "updatedpooling", "latest"],
|
358 |
+
default="latest",
|
359 |
+
dest="cut_method",
|
360 |
+
)
|
361 |
+
vq_parser.add_argument(
|
362 |
+
"-cuts", "--num_cuts", type=int, help="Number of cuts", default=32, dest="cutn"
|
363 |
+
)
|
364 |
+
vq_parser.add_argument(
|
365 |
+
"-cutp",
|
366 |
+
"--cut_power",
|
367 |
+
type=float,
|
368 |
+
help="Cut power",
|
369 |
+
default=1.0,
|
370 |
+
dest="cut_pow",
|
371 |
+
)
|
372 |
+
vq_parser.add_argument(
|
373 |
+
"-sd", "--seed", type=int, help="Seed", default=None, dest="seed"
|
374 |
+
)
|
375 |
+
vq_parser.add_argument(
|
376 |
+
"-opt",
|
377 |
+
"--optimiser",
|
378 |
+
type=str,
|
379 |
+
help="Optimiser",
|
380 |
+
choices=[
|
381 |
+
"Adam",
|
382 |
+
"AdamW",
|
383 |
+
"Adagrad",
|
384 |
+
"Adamax",
|
385 |
+
"DiffGrad",
|
386 |
+
"AdamP",
|
387 |
+
"RAdam",
|
388 |
+
"RMSprop",
|
389 |
+
],
|
390 |
+
default="Adam",
|
391 |
+
dest="optimiser",
|
392 |
+
)
|
393 |
+
vq_parser.add_argument(
|
394 |
+
"-o",
|
395 |
+
"--output",
|
396 |
+
type=str,
|
397 |
+
help="Output filename",
|
398 |
+
default="output.png",
|
399 |
+
dest="output",
|
400 |
+
)
|
401 |
+
vq_parser.add_argument(
|
402 |
+
"-vid",
|
403 |
+
"--video",
|
404 |
+
action="store_true",
|
405 |
+
help="Create video frames?",
|
406 |
+
dest="make_video",
|
407 |
+
)
|
408 |
+
vq_parser.add_argument(
|
409 |
+
"-zvid",
|
410 |
+
"--zoom_video",
|
411 |
+
action="store_true",
|
412 |
+
help="Create zoom video?",
|
413 |
+
dest="make_zoom_video",
|
414 |
+
)
|
415 |
+
vq_parser.add_argument(
|
416 |
+
"-zs",
|
417 |
+
"--zoom_start",
|
418 |
+
type=int,
|
419 |
+
help="Zoom start iteration",
|
420 |
+
default=0,
|
421 |
+
dest="zoom_start",
|
422 |
+
)
|
423 |
+
vq_parser.add_argument(
|
424 |
+
"-zse",
|
425 |
+
"--zoom_save_every",
|
426 |
+
type=int,
|
427 |
+
help="Save zoom image iterations",
|
428 |
+
default=10,
|
429 |
+
dest="zoom_frequency",
|
430 |
+
)
|
431 |
+
vq_parser.add_argument(
|
432 |
+
"-zsc",
|
433 |
+
"--zoom_scale",
|
434 |
+
type=float,
|
435 |
+
help="Zoom scale %",
|
436 |
+
default=0.99,
|
437 |
+
dest="zoom_scale",
|
438 |
+
)
|
439 |
+
vq_parser.add_argument(
|
440 |
+
"-zsx",
|
441 |
+
"--zoom_shift_x",
|
442 |
+
type=int,
|
443 |
+
help="Zoom shift x (left/right) amount in pixels",
|
444 |
+
default=0,
|
445 |
+
dest="zoom_shift_x",
|
446 |
+
)
|
447 |
+
vq_parser.add_argument(
|
448 |
+
"-zsy",
|
449 |
+
"--zoom_shift_y",
|
450 |
+
type=int,
|
451 |
+
help="Zoom shift y (up/down) amount in pixels",
|
452 |
+
default=0,
|
453 |
+
dest="zoom_shift_y",
|
454 |
+
)
|
455 |
+
vq_parser.add_argument(
|
456 |
+
"-cpe",
|
457 |
+
"--change_prompt_every",
|
458 |
+
type=int,
|
459 |
+
help="Prompt change frequency",
|
460 |
+
default=0,
|
461 |
+
dest="prompt_frequency",
|
462 |
+
)
|
463 |
+
vq_parser.add_argument(
|
464 |
+
"-vl",
|
465 |
+
"--video_length",
|
466 |
+
type=float,
|
467 |
+
help="Video length in seconds (not interpolated)",
|
468 |
+
default=10,
|
469 |
+
dest="video_length",
|
470 |
+
)
|
471 |
+
vq_parser.add_argument(
|
472 |
+
"-ofps",
|
473 |
+
"--output_video_fps",
|
474 |
+
type=float,
|
475 |
+
help="Create an interpolated video (Nvidia GPU only) with this fps (min 10. best set to 30 or 60)",
|
476 |
+
default=30,
|
477 |
+
dest="output_video_fps",
|
478 |
+
)
|
479 |
+
vq_parser.add_argument(
|
480 |
+
"-ifps",
|
481 |
+
"--input_video_fps",
|
482 |
+
type=float,
|
483 |
+
help="When creating an interpolated video, use this as the input fps to interpolate from (>0 & <ofps)",
|
484 |
+
default=15,
|
485 |
+
dest="input_video_fps",
|
486 |
+
)
|
487 |
+
vq_parser.add_argument(
|
488 |
+
"-d",
|
489 |
+
"--deterministic",
|
490 |
+
action="store_true",
|
491 |
+
help="Enable cudnn.deterministic?",
|
492 |
+
dest="cudnn_determinism",
|
493 |
+
)
|
494 |
+
vq_parser.add_argument(
|
495 |
+
"-aug",
|
496 |
+
"--augments",
|
497 |
+
nargs="+",
|
498 |
+
action="append",
|
499 |
+
type=str,
|
500 |
+
choices=["Ji", "Sh", "Gn", "Pe", "Ro", "Af", "Et", "Ts", "Cr", "Er", "Re"],
|
501 |
+
help="Enabled augments (latest vut method only)",
|
502 |
+
default=[["Af", "Pe", "Ji", "Er"]],
|
503 |
+
dest="augments",
|
504 |
+
)
|
505 |
+
vq_parser.add_argument(
|
506 |
+
"-vsd",
|
507 |
+
"--video_style_dir",
|
508 |
+
type=str,
|
509 |
+
help="Directory with video frames to style",
|
510 |
+
default=None,
|
511 |
+
dest="video_style_dir",
|
512 |
+
)
|
513 |
+
vq_parser.add_argument(
|
514 |
+
"-cd",
|
515 |
+
"--cuda_device",
|
516 |
+
type=str,
|
517 |
+
help="Cuda device to use",
|
518 |
+
default="cuda:0",
|
519 |
+
dest="cuda_device",
|
520 |
+
)
|
521 |
+
|
522 |
+
# Execute the parse_args() method
|
523 |
+
args = vq_parser.parse_args("")
|
524 |
+
return args
|
525 |
+
|
526 |
+
|
527 |
+
def load_vqgan_model(config_path, checkpoint_path):
|
528 |
+
config = OmegaConf.load(config_path)
|
529 |
+
# config.model.target == 'taming.models.vqgan.VQModel':
|
530 |
+
model = vqgan.VQModel(**config.model.params)
|
531 |
+
model.eval().requires_grad_(False)
|
532 |
+
model.init_from_ckpt(checkpoint_path)
|
533 |
+
del model.loss
|
534 |
+
return model
|
535 |
+
|
536 |
+
|
537 |
+
class MakeCutouts(nn.Module):
|
538 |
+
def __init__(self, cut_size, cutn, args, cut_pow=1.0):
|
539 |
+
super().__init__()
|
540 |
+
self.cut_size = cut_size
|
541 |
+
self.cutn = cutn
|
542 |
+
self.cut_pow = cut_pow # not used with pooling
|
543 |
+
|
544 |
+
# Pick your own augments & their order
|
545 |
+
augment_list = []
|
546 |
+
for item in args.augments[0]:
|
547 |
+
if item == "Ji":
|
548 |
+
augment_list.append(
|
549 |
+
K.ColorJitter(
|
550 |
+
brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1, p=0.7
|
551 |
+
)
|
552 |
+
)
|
553 |
+
elif item == "Sh":
|
554 |
+
augment_list.append(K.RandomSharpness(sharpness=0.3, p=0.5))
|
555 |
+
elif item == "Gn":
|
556 |
+
augment_list.append(K.RandomGaussianNoise(mean=0.0, std=1.0, p=0.5))
|
557 |
+
elif item == "Pe":
|
558 |
+
augment_list.append(K.RandomPerspective(distortion_scale=0.7, p=0.7))
|
559 |
+
elif item == "Ro":
|
560 |
+
augment_list.append(K.RandomRotation(degrees=15, p=0.7))
|
561 |
+
elif item == "Af":
|
562 |
+
augment_list.append(
|
563 |
+
K.RandomAffine(
|
564 |
+
degrees=15,
|
565 |
+
translate=0.1,
|
566 |
+
shear=5,
|
567 |
+
p=0.7,
|
568 |
+
padding_mode="zeros",
|
569 |
+
keepdim=True,
|
570 |
+
)
|
571 |
+
) # border, reflection, zeros
|
572 |
+
elif item == "Et":
|
573 |
+
augment_list.append(K.RandomElasticTransform(p=0.7))
|
574 |
+
elif item == "Ts":
|
575 |
+
augment_list.append(
|
576 |
+
K.RandomThinPlateSpline(scale=0.8, same_on_batch=True, p=0.7)
|
577 |
+
)
|
578 |
+
elif item == "Cr":
|
579 |
+
augment_list.append(
|
580 |
+
K.RandomCrop(
|
581 |
+
size=(self.cut_size, self.cut_size),
|
582 |
+
pad_if_needed=True,
|
583 |
+
padding_mode="reflect",
|
584 |
+
p=0.5,
|
585 |
+
)
|
586 |
+
)
|
587 |
+
elif item == "Er":
|
588 |
+
augment_list.append(
|
589 |
+
K.RandomErasing(
|
590 |
+
scale=(0.1, 0.4),
|
591 |
+
ratio=(0.3, 1 / 0.3),
|
592 |
+
same_on_batch=True,
|
593 |
+
p=0.7,
|
594 |
+
)
|
595 |
+
)
|
596 |
+
elif item == "Re":
|
597 |
+
augment_list.append(
|
598 |
+
K.RandomResizedCrop(
|
599 |
+
size=(self.cut_size, self.cut_size),
|
600 |
+
scale=(0.1, 1),
|
601 |
+
ratio=(0.75, 1.333),
|
602 |
+
cropping_mode="resample",
|
603 |
+
p=0.5,
|
604 |
+
)
|
605 |
+
)
|
606 |
+
|
607 |
+
self.augs = nn.Sequential(*augment_list)
|
608 |
+
self.noise_fac = 0.1
|
609 |
+
# self.noise_fac = False
|
610 |
+
|
611 |
+
# Uncomment if you like seeing the list ;)
|
612 |
+
# print(augment_list)
|
613 |
+
|
614 |
+
# Pooling
|
615 |
+
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
|
616 |
+
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
|
617 |
+
|
618 |
+
def forward(self, input):
|
619 |
+
cutouts = []
|
620 |
+
|
621 |
+
for _ in range(self.cutn):
|
622 |
+
# Use Pooling
|
623 |
+
cutout = (self.av_pool(input) + self.max_pool(input)) / 2
|
624 |
+
cutouts.append(cutout)
|
625 |
+
|
626 |
+
batch = self.augs(torch.cat(cutouts, dim=0))
|
627 |
+
|
628 |
+
if self.noise_fac:
|
629 |
+
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
|
630 |
+
batch = batch + facs * torch.randn_like(batch)
|
631 |
+
return batch
|
632 |
+
|
633 |
+
|
634 |
+
def get_opt(opt_name, opt_lr, z):
|
635 |
+
if opt_name == "Adam":
|
636 |
+
opt = optim.Adam([z], lr=opt_lr) # LR=0.1 (Default)
|
637 |
+
elif opt_name == "AdamW":
|
638 |
+
opt = optim.AdamW([z], lr=opt_lr)
|
639 |
+
elif opt_name == "Adagrad":
|
640 |
+
opt = optim.Adagrad([z], lr=opt_lr)
|
641 |
+
elif opt_name == "Adamax":
|
642 |
+
opt = optim.Adamax([z], lr=opt_lr)
|
643 |
+
elif opt_name == "DiffGrad":
|
644 |
+
opt = DiffGrad(
|
645 |
+
[z], lr=opt_lr, eps=1e-9, weight_decay=1e-9
|
646 |
+
) # NR: Playing for reasons
|
647 |
+
elif opt_name == "AdamP":
|
648 |
+
opt = AdamP([z], lr=opt_lr)
|
649 |
+
elif opt_name == "RAdam":
|
650 |
+
opt = RAdam([z], lr=opt_lr)
|
651 |
+
elif opt_name == "RMSprop":
|
652 |
+
opt = optim.RMSprop([z], lr=opt_lr)
|
653 |
+
else:
|
654 |
+
print("Unknown optimiser. Are choices broken?")
|
655 |
+
opt = optim.Adam([z], lr=opt_lr)
|
656 |
+
return opt
|
657 |
+
|
658 |
+
|
659 |
+
def ascend_txt(i, z, perceptor, args, model, make_cutouts, pMs):
|
660 |
+
normalize = transforms.Normalize(
|
661 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
662 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
663 |
+
)
|
664 |
+
out = synth(z, model)
|
665 |
+
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
|
666 |
+
|
667 |
+
result = []
|
668 |
+
|
669 |
+
if args.init_weight:
|
670 |
+
# result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
|
671 |
+
result.append(
|
672 |
+
F.mse_loss(z, torch.zeros_like(z_orig))
|
673 |
+
* ((1 / torch.tensor(i * 2 + 1)) * args.init_weight)
|
674 |
+
/ 2
|
675 |
+
)
|
676 |
+
|
677 |
+
for prompt in pMs:
|
678 |
+
result.append(prompt(iii))
|
679 |
+
|
680 |
+
if args.make_video:
|
681 |
+
img = np.array(
|
682 |
+
out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8)
|
683 |
+
)[:, :, :]
|
684 |
+
img = np.transpose(img, (1, 2, 0))
|
685 |
+
imageio.imwrite("steps/" + str(i) + ".png", np.array(img))
|
686 |
+
|
687 |
+
return result
|
688 |
+
|
689 |
+
|
690 |
+
def synth(z, model):
|
691 |
+
# gumbel is False
|
692 |
+
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(
|
693 |
+
3, 1
|
694 |
+
)
|
695 |
+
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
|
696 |
+
|
697 |
+
|
698 |
+
def vector_quantize(x, codebook):
|
699 |
+
d = (
|
700 |
+
x.pow(2).sum(dim=-1, keepdim=True)
|
701 |
+
+ codebook.pow(2).sum(dim=1)
|
702 |
+
- 2 * x @ codebook.T
|
703 |
+
)
|
704 |
+
indices = d.argmin(-1)
|
705 |
+
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
|
706 |
+
return replace_grad(x_q, x)
|
707 |
+
|
708 |
+
|
709 |
+
def split_prompt(prompt):
|
710 |
+
vals = prompt.rsplit(":", 2)
|
711 |
+
vals = vals + ["", "1", "-inf"][len(vals) :]
|
712 |
+
return vals[0], float(vals[1]), float(vals[2])
|
713 |
+
|
714 |
+
|
715 |
+
class Prompt(nn.Module):
|
716 |
+
def __init__(self, embed, weight=1.0, stop=float("-inf")):
|
717 |
+
super().__init__()
|
718 |
+
self.register_buffer("embed", embed)
|
719 |
+
self.register_buffer("weight", torch.as_tensor(weight))
|
720 |
+
self.register_buffer("stop", torch.as_tensor(stop))
|
721 |
+
|
722 |
+
def forward(self, input):
|
723 |
+
input_normed = F.normalize(input.unsqueeze(1), dim=2)
|
724 |
+
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
|
725 |
+
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
|
726 |
+
dists = dists * self.weight.sign()
|
727 |
+
return (
|
728 |
+
self.weight.abs()
|
729 |
+
* replace_grad(dists, torch.maximum(dists, self.stop)).mean()
|
730 |
+
)
|