|
import math |
|
from typing import Dict, List, Optional, Union |
|
import numpy as np |
|
import transformers |
|
from transformers.tokenization_utils_base import AudioInput |
|
from transformers.models.seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor |
|
from transformers.utils import TensorType |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers import AutoFeatureExtractor |
|
|
|
|
|
def build_audio_tokens(text: List[str], audio_features: Union[Dict, List[List[np.ndarray]]], audio_token="<|audio|>") -> Dict: |
|
if not isinstance(audio_features, list): |
|
audio_features = audio_features['audio_features'] |
|
bs = audio_features.shape[0] |
|
for i in range(bs): |
|
for j in range(len(audio_features[i])): |
|
tgt_token = f"<|audio_{j+1}|>" * get_num_embeddings(audio_features[i][j].shape[0]) |
|
text[i] = text[i].replace(audio_token, tgt_token, 1) |
|
return text |
|
|
|
def get_num_embeddings(num_framses, adapter_kernel_size=3, adapter_stride=2) -> int: |
|
pad = adapter_stride // 2 |
|
seq_lens = ((num_framses + 2 * pad - adapter_kernel_size) / adapter_stride) + 1 |
|
l1 = math.floor(seq_lens) |
|
seq_lens = ((l1 + 2 * pad - adapter_kernel_size) / adapter_stride) + 1 |
|
l2 = math.floor(seq_lens) |
|
return l2 + 2 |
|
|
|
class MllamaAudioFeatureExtractor(SeamlessM4TFeatureExtractor): |
|
|
|
def __call__( |
|
self, |
|
batch_audio_clips: List[List[AudioInput]], |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
) -> BatchFeature: |
|
audio_features = [[ super(MllamaAudioFeatureExtractor, self).__call__(audio_j, sampling_rate=16000, return_attention_mask=False)['input_features'][0] for audio_j in audio_i ] for audio_i in batch_audio_clips ] |
|
packed_audio_features = self.pack_audio_clips(audio_features) |
|
|
|
encoded_audio_inputs = BatchFeature( |
|
data={ |
|
"audio_features": packed_audio_features, |
|
}, |
|
tensor_type=return_tensors, |
|
) |
|
|
|
return encoded_audio_inputs |
|
|
|
def pack_audio_clips(self, batch_audio_clips: List[List[np.ndarray]]) -> np.ndarray: |
|
assert batch_audio_clips[0][0].ndim == 2 |
|
|
|
batch_size = len(batch_audio_clips) |
|
max_num_clips = max([len(clips) for clips in batch_audio_clips]) |
|
max_frames = max([clip.shape[0] for clips in batch_audio_clips for clip in clips]) |
|
feature_dim = batch_audio_clips[0][0].shape[1] |
|
|
|
stacked_audio_clips = np.zeros((batch_size, max_num_clips, max_frames, feature_dim), dtype=np.float32) |
|
for i, clips in enumerate(batch_audio_clips): |
|
for j, clip in enumerate(clips): |
|
stacked_audio_clips[i, j, :clip.shape[0], :] = clip |
|
|
|
return stacked_audio_clips |
|
|
|
AutoFeatureExtractor.register("MllamaAudioFeatureExtractor", MllamaAudioFeatureExtractor) |
|
transformers.MllamaAudioFeatureExtractor = MllamaAudioFeatureExtractor |