Alex-VisTas
commited on
Commit
·
09e00e7
1
Parent(s):
7a507ea
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,23 +60,47 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
- Transformers 4.23.1
|
80 |
- Pytorch 1.12.1+cu113
|
81 |
-
- Datasets 2.
|
82 |
- Tokenizers 0.13.1
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.7927272727272727
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4349
|
35 |
+
- Accuracy: 0.7927
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.632 | 1.0 | 58 | 0.5883 | 0.6836 |
|
70 |
+
| 0.6067 | 2.0 | 116 | 0.6017 | 0.6848 |
|
71 |
+
| 0.5865 | 3.0 | 174 | 0.5695 | 0.7042 |
|
72 |
+
| 0.553 | 4.0 | 232 | 0.5185 | 0.7515 |
|
73 |
+
| 0.5468 | 5.0 | 290 | 0.5108 | 0.7430 |
|
74 |
+
| 0.5473 | 6.0 | 348 | 0.4882 | 0.7648 |
|
75 |
+
| 0.5381 | 7.0 | 406 | 0.4800 | 0.7588 |
|
76 |
+
| 0.5468 | 8.0 | 464 | 0.5056 | 0.7358 |
|
77 |
+
| 0.5191 | 9.0 | 522 | 0.4784 | 0.7673 |
|
78 |
+
| 0.5318 | 10.0 | 580 | 0.4762 | 0.7636 |
|
79 |
+
| 0.5079 | 11.0 | 638 | 0.4859 | 0.7673 |
|
80 |
+
| 0.5216 | 12.0 | 696 | 0.4691 | 0.7697 |
|
81 |
+
| 0.515 | 13.0 | 754 | 0.4857 | 0.7624 |
|
82 |
+
| 0.5186 | 14.0 | 812 | 0.4685 | 0.7733 |
|
83 |
+
| 0.4748 | 15.0 | 870 | 0.4536 | 0.7818 |
|
84 |
+
| 0.4853 | 16.0 | 928 | 0.4617 | 0.7770 |
|
85 |
+
| 0.4868 | 17.0 | 986 | 0.4622 | 0.7782 |
|
86 |
+
| 0.4572 | 18.0 | 1044 | 0.4583 | 0.7770 |
|
87 |
+
| 0.4679 | 19.0 | 1102 | 0.4590 | 0.7733 |
|
88 |
+
| 0.4508 | 20.0 | 1160 | 0.4576 | 0.7903 |
|
89 |
+
| 0.4663 | 21.0 | 1218 | 0.4542 | 0.7891 |
|
90 |
+
| 0.4533 | 22.0 | 1276 | 0.4428 | 0.7903 |
|
91 |
+
| 0.4892 | 23.0 | 1334 | 0.4372 | 0.7867 |
|
92 |
+
| 0.4704 | 24.0 | 1392 | 0.4414 | 0.7903 |
|
93 |
+
| 0.4304 | 25.0 | 1450 | 0.4430 | 0.7988 |
|
94 |
+
| 0.4411 | 26.0 | 1508 | 0.4348 | 0.7818 |
|
95 |
+
| 0.4604 | 27.0 | 1566 | 0.4387 | 0.7927 |
|
96 |
+
| 0.441 | 28.0 | 1624 | 0.4378 | 0.7964 |
|
97 |
+
| 0.442 | 29.0 | 1682 | 0.4351 | 0.7915 |
|
98 |
+
| 0.4585 | 30.0 | 1740 | 0.4349 | 0.7927 |
|
99 |
|
100 |
|
101 |
### Framework versions
|
102 |
|
103 |
- Transformers 4.23.1
|
104 |
- Pytorch 1.12.1+cu113
|
105 |
+
- Datasets 2.6.0
|
106 |
- Tokenizers 0.13.1
|