Aleksandar's picture
add model
139e999
|
raw
history blame
1.96 kB
---
tags:
- generated_from_trainer
datasets:
- null
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: electra-srb-ner-setimes
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.9411086738297951
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-srb-ner-setimes
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2071
- Precision: 0.7502
- Recall: 0.7385
- F1: 0.7443
- Accuracy: 0.9411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 104 | 0.3002 | 0.6859 | 0.5930 | 0.6361 | 0.9171 |
| No log | 2.0 | 208 | 0.2449 | 0.7509 | 0.6422 | 0.6923 | 0.9287 |
| No log | 3.0 | 312 | 0.2165 | 0.7557 | 0.7062 | 0.7301 | 0.9378 |
| No log | 4.0 | 416 | 0.2148 | 0.7402 | 0.7398 | 0.7400 | 0.9388 |
| 0.2565 | 5.0 | 520 | 0.2071 | 0.7502 | 0.7385 | 0.7443 | 0.9411 |
### Framework versions
- Transformers 4.9.2
- Pytorch 1.9.0
- Datasets 1.11.0
- Tokenizers 0.10.1