distilbert-srb-ner / README.md
Aleksandar's picture
add model
bc7663a
|
raw
history blame
1.58 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - null
metrics:
  - precision
  - recall
  - f1
  - accuracy
model_index:
  - name: distilbert-srb-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        metric:
          name: Accuracy
          type: accuracy
          value: 0.9307369779067892

distilbert-srb-ner

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2453
  • Precision: 0.6533
  • Recall: 0.6551
  • F1: 0.6542
  • Accuracy: 0.9307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 207 0.2453 0.6533 0.6551 0.6542 0.9307

Framework versions

  • Transformers 4.9.2
  • Pytorch 1.9.0
  • Datasets 1.11.0
  • Tokenizers 0.10.1