bart-model / README.md
Akhilsplendid's picture
Training complete!
498b646
metadata
license: mit
base_model: philschmid/bart-large-cnn-samsum
tags:
  - generated_from_trainer
model-index:
  - name: bart-model
    results: []

bart-model

This model is a fine-tuned version of philschmid/bart-large-cnn-samsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.487 0.8 10 1.2019
1.3092 1.61 20 0.9905
1.0316 2.41 30 0.7841
0.8111 3.22 40 0.6587
0.7191 4.02 50 0.5964
0.5906 4.82 60 0.5613
0.5351 5.63 70 0.5393
0.4696 6.43 80 0.5429
0.4249 7.24 90 0.5287
0.3619 8.04 100 0.5577
0.3303 8.84 110 0.5794
0.2718 9.65 120 0.6169

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3