language:
- hu
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- hu
- robust-speech-event
- model_for_talk
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: Akashpb13/xlsr_hungarian_new
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: hu
metrics:
- name: Test WER
type: wer
value: 0.02698525418772714
- name: Test CER
type: cer
value: 0.005033063261641211
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: hu
metrics:
- name: Test WER
type: wer
value: 0.02698525418772714
- name: Test CER
type: cer
value: 0.005033063261641211
Akashpb13/xlsr_hungarian_new
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, dev and validated datasets):
- Loss: 0.184265
- Wer: 0.292771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
learning_rate: 0.000095637994662983496 train_batch_size: 16 eval_batch_size: 16 seed: 13 gradient_accumulation_steps: 16 total_train_batch_size: 316 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: cosine_with_restarts lr_scheduler_warmup_steps: 500 num_epochs: 100 mixed_precision_training: Native AMP
Training results
Step Training Loss Validation Loss Wer 500 4.825900 1.001413 0.810308 1000 0.561400 0.202275 0.361987 1500 0.298900 0.169643 0.326449 2000 0.236500 0.168602 0.316215 2500 0.199100 0.182484 0.308587 3000 0.179100 0.178076 0.303005 3500 0.161500 0.179107 0.299935 4000 0.151700 0.183371 0.295283 4500 0.143700 0.184443 0.295283 5000 0.138900 0.184265 0.292771
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id Akashpb13/xlsr_hungarian_new --dataset mozilla-foundation/common_voice_7_0 --config hu --split test