metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-timit-demo-google-colab
results: []
wav2vec2-base-timit-demo-google-colab
This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5313
- Wer: 0.3317
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.5823 | 1.0 | 500 | 1.8501 | 1.0236 |
0.8931 | 2.01 | 1000 | 0.5018 | 0.5196 |
0.4269 | 3.01 | 1500 | 0.4266 | 0.4461 |
0.2876 | 4.02 | 2000 | 0.4458 | 0.4359 |
0.2272 | 5.02 | 2500 | 0.4183 | 0.4146 |
0.1813 | 6.02 | 3000 | 0.4151 | 0.3945 |
0.1555 | 7.03 | 3500 | 0.4216 | 0.3881 |
0.1353 | 8.03 | 4000 | 0.4282 | 0.3824 |
0.1221 | 9.04 | 4500 | 0.4848 | 0.3845 |
0.1135 | 10.04 | 5000 | 0.5003 | 0.3818 |
0.0968 | 11.04 | 5500 | 0.5331 | 0.3738 |
0.09 | 12.05 | 6000 | 0.5082 | 0.3690 |
0.084 | 13.05 | 6500 | 0.4573 | 0.3634 |
0.0744 | 14.06 | 7000 | 0.4711 | 0.3705 |
0.0663 | 15.06 | 7500 | 0.4955 | 0.3634 |
0.0612 | 16.06 | 8000 | 0.4721 | 0.3558 |
0.0535 | 17.07 | 8500 | 0.4965 | 0.3654 |
0.0527 | 18.07 | 9000 | 0.5381 | 0.3592 |
0.0458 | 19.08 | 9500 | 0.5029 | 0.3498 |
0.0424 | 20.08 | 10000 | 0.5814 | 0.3547 |
0.042 | 21.08 | 10500 | 0.4893 | 0.3480 |
0.0373 | 22.09 | 11000 | 0.5047 | 0.3482 |
0.0333 | 23.09 | 11500 | 0.5235 | 0.3426 |
0.0306 | 24.1 | 12000 | 0.5165 | 0.3472 |
0.0293 | 25.1 | 12500 | 0.4988 | 0.3426 |
0.025 | 26.1 | 13000 | 0.5157 | 0.3382 |
0.0255 | 27.11 | 13500 | 0.5278 | 0.3412 |
0.022 | 28.11 | 14000 | 0.5401 | 0.3364 |
0.0195 | 29.12 | 14500 | 0.5313 | 0.3317 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 1.18.3
- Tokenizers 0.15.1