AhmedTaha012's picture
End of training
c768839
metadata
license: apache-2.0
base_model: CAMeL-Lab/bert-base-arabic-camelbert-msa-ner
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: hadith-finetuned-ner2
    results: []

hadith-finetuned-ner2

This model is a fine-tuned version of CAMeL-Lab/bert-base-arabic-camelbert-msa-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1591
  • Precision: 0.8899
  • Recall: 0.9602
  • F1: 0.9237
  • Accuracy: 0.9452

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.5252 1.0 468 0.4358 0.7801 0.7819 0.7810 0.8478
0.228 2.0 937 0.2789 0.8225 0.9172 0.8673 0.9055
0.1561 3.0 1405 0.2077 0.8648 0.9395 0.9006 0.9301
0.1759 4.0 1874 0.1692 0.8914 0.9506 0.9201 0.9434
0.1496 4.99 2340 0.1591 0.8899 0.9602 0.9237 0.9452

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1