summarize / README.md
Ahmed235's picture
End of training
868b950 verified
metadata
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
model-index:
  - name: summarize
    results: []

summarize

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6935
  • Evaluation: {'evaluation_runtime': 28.518348455429077, 'samples_per_second': 33.3118869588378, 'steps_per_second': 33.3118869588378}
  • Rounded Rouge: {'rouge1': 0.1705, 'rouge2': 0.0588, 'rougeL': 0.1354, 'rougeLsum': 0.1355}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Evaluation Rounded Rouge
3.1701 1.0 500 2.8229 {'evaluation_runtime': 30.270989179611206, 'samples_per_second': 31.383183230756966, 'steps_per_second': 31.383183230756966} {'rouge1': 0.1615, 'rouge2': 0.0525, 'rougeL': 0.128, 'rougeLsum': 0.1281}
2.9661 2.0 1000 2.7672 {'evaluation_runtime': 28.879830598831177, 'samples_per_second': 32.894929793613414, 'steps_per_second': 32.894929793613414} {'rouge1': 0.1676, 'rouge2': 0.0567, 'rougeL': 0.1326, 'rougeLsum': 0.1327}
2.9128 3.0 1500 2.7414 {'evaluation_runtime': 28.787310361862183, 'samples_per_second': 33.00065160858421, 'steps_per_second': 33.00065160858421} {'rouge1': 0.1693, 'rouge2': 0.0575, 'rougeL': 0.1342, 'rougeLsum': 0.1343}
2.8783 4.0 2000 2.7240 {'evaluation_runtime': 28.755173683166504, 'samples_per_second': 33.03753301814126, 'steps_per_second': 33.03753301814126} {'rouge1': 0.1694, 'rouge2': 0.0581, 'rougeL': 0.1343, 'rougeLsum': 0.1344}
2.8548 5.0 2500 2.7137 {'evaluation_runtime': 30.050004959106445, 'samples_per_second': 31.613971488284534, 'steps_per_second': 31.613971488284534} {'rouge1': 0.171, 'rouge2': 0.0591, 'rougeL': 0.1354, 'rougeLsum': 0.1354}
2.8353 6.0 3000 2.7047 {'evaluation_runtime': 29.376569986343384, 'samples_per_second': 32.33869714679546, 'steps_per_second': 32.33869714679546} {'rouge1': 0.1703, 'rouge2': 0.0587, 'rougeL': 0.135, 'rougeLsum': 0.135}
2.8229 7.0 3500 2.6996 {'evaluation_runtime': 27.381307363510132, 'samples_per_second': 34.69520236517353, 'steps_per_second': 34.69520236517353} {'rouge1': 0.1714, 'rouge2': 0.0592, 'rougeL': 0.1357, 'rougeLsum': 0.1357}
2.8154 8.0 4000 2.6958 {'evaluation_runtime': 27.409220457077026, 'samples_per_second': 34.65986934899169, 'steps_per_second': 34.65986934899169} {'rouge1': 0.17, 'rouge2': 0.0587, 'rougeL': 0.1351, 'rougeLsum': 0.1352}
2.8068 9.0 4500 2.6943 {'evaluation_runtime': 27.376741409301758, 'samples_per_second': 34.7009889086807, 'steps_per_second': 34.7009889086807} {'rouge1': 0.1702, 'rouge2': 0.0588, 'rougeL': 0.1352, 'rougeLsum': 0.1353}
2.8 10.0 5000 2.6935 {'evaluation_runtime': 28.518348455429077, 'samples_per_second': 33.3118869588378, 'steps_per_second': 33.3118869588378} {'rouge1': 0.1705, 'rouge2': 0.0588, 'rougeL': 0.1354, 'rougeLsum': 0.1355}

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2