Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
-
import json
|
2 |
from PIL import Image
|
|
|
3 |
import numpy as np
|
4 |
-
from
|
5 |
-
from tensorflow.keras.models import load_model
|
6 |
-
import ipywidgets as widgets
|
7 |
-
from IPython.display import display
|
8 |
-
|
9 |
-
model_path = 'final_teath_classifier.h5'
|
10 |
|
|
|
|
|
11 |
model = tf.keras.models.load_model(model_path)
|
12 |
|
13 |
-
# Load the model from Hugging Face model hub
|
14 |
-
|
15 |
def preprocess_image(image: Image.Image) -> np.ndarray:
|
16 |
# Resize the image to match input size
|
17 |
image = image.resize((256, 256))
|
@@ -25,41 +20,21 @@ def predict_image(image_path):
|
|
25 |
img = Image.open(image_path)
|
26 |
# Preprocess the image
|
27 |
img_array = preprocess_image(img)
|
28 |
-
|
29 |
-
inputs = tokenizer.encode(img_array, return_tensors="tf")
|
30 |
-
# Make prediction
|
31 |
-
outputs = model(inputs)
|
32 |
-
predictions = tf.nn.softmax(outputs.logits, axis=-1)
|
33 |
predicted_class = np.argmax(predictions)
|
34 |
if predicted_class == 0:
|
35 |
-
|
36 |
else:
|
37 |
-
|
38 |
-
|
39 |
-
return predict_label, predictions.numpy().flatten()
|
40 |
|
41 |
-
# Create a file uploader widget
|
42 |
-
uploader = widgets.FileUpload(accept="image/*", multiple=False)
|
43 |
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
# Get the uploaded image file
|
50 |
-
image_file = list(uploader.value.values())[0]["content"]
|
51 |
-
# Save the image to a temporary file
|
52 |
-
with open("temp_image.jpg", "wb") as f:
|
53 |
-
f.write(image_file)
|
54 |
-
# Get predictions for the uploaded image
|
55 |
-
predict_label, logits = predict_image("temp_image.jpg")
|
56 |
-
# Create a JSON object with the predictions
|
57 |
-
predictions_json = {
|
58 |
-
"predicted_class": predict_label,
|
59 |
-
"evaluations": [f"{logit*100:.4f}%" for logit in logits]
|
60 |
-
}
|
61 |
-
# Print the JSON object
|
62 |
-
print(json.dumps(predictions_json, indent=4))
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
+
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
+
#from google.colab import files
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
#model_path = 'final_teath_classifier.h5'
|
7 |
+
# Load the model
|
8 |
model = tf.keras.models.load_model(model_path)
|
9 |
|
|
|
|
|
10 |
def preprocess_image(image: Image.Image) -> np.ndarray:
|
11 |
# Resize the image to match input size
|
12 |
image = image.resize((256, 256))
|
|
|
20 |
img = Image.open(image_path)
|
21 |
# Preprocess the image
|
22 |
img_array = preprocess_image(img)
|
23 |
+
predictions = model.predict(img_array)
|
|
|
|
|
|
|
|
|
24 |
predicted_class = np.argmax(predictions)
|
25 |
if predicted_class == 0:
|
26 |
+
predict_label = "Clean"
|
27 |
else:
|
28 |
+
predict_label = "Carries"
|
|
|
|
|
29 |
|
|
|
|
|
30 |
|
31 |
+
return predict_label,predictions.flatten()
|
32 |
+
# Upload the image
|
33 |
+
#uploaded = files.upload()
|
34 |
|
35 |
+
# Get the uploaded image file name
|
36 |
+
#image_path = list(uploaded.keys())[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
predict_label, logits = predict_image(image_path)
|
39 |
+
print("Predicted class:", predict_label)
|
40 |
+
print("Evaluate:", ', '.join(f"{logits*100:.4f}%" for logits in logits))
|