Advance-Ali commited on
Commit
729f3c8
·
verified ·
1 Parent(s): 7b5d108

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -3
README.md CHANGED
@@ -18,26 +18,38 @@ This is a fine-tuned **`ResNet-18`** model designed for a 7-class classification
18
  ---
19
 
20
  ## 📈 Evaluation Metrics on Test Data
21
- ![confusion matrix](images/confusion_matrix.png)
22
 
23
  Accuracy: 79.92%
 
24
  Precision: 79.80%
 
25
  Recall: 79.92%
 
26
  F1-Score: 79.80%
27
 
28
  Classification Report:
 
29
  precision recall f1-score support
30
 
31
  1 0.79 0.81 0.80 329
 
32
  2 0.58 0.47 0.52 74
 
33
  3 0.51 0.42 0.46 160
 
34
  4 0.92 0.90 0.91 1185
 
35
  5 0.74 0.78 0.76 478
 
36
  6 0.68 0.72 0.70 162
 
37
  7 0.75 0.78 0.77 680
38
-
39
  accuracy 0.80 3068
 
40
  macro avg 0.71 0.70 0.70 3068
 
41
  weighted avg 0.80 0.80 0.80 3068
42
 
43
  ## 🧑‍💻 How to Use
@@ -48,7 +60,6 @@ You can load the model weights and architecture for inference or fine-tuning wit
48
  ```
49
 
50
  def get_out_channels(module):
51
- """تابعی برای یافتن تعداد کانال‌های خروجی از لایه‌های کانولوشن و BatchNorm"""
52
  if isinstance(module, nn.Conv2d):
53
  return module.out_channels
54
  elif isinstance(module, nn.BatchNorm2d):
 
18
  ---
19
 
20
  ## 📈 Evaluation Metrics on Test Data
21
+ ![confusion matrix](confusion_matrix.png)
22
 
23
  Accuracy: 79.92%
24
+
25
  Precision: 79.80%
26
+
27
  Recall: 79.92%
28
+
29
  F1-Score: 79.80%
30
 
31
  Classification Report:
32
+
33
  precision recall f1-score support
34
 
35
  1 0.79 0.81 0.80 329
36
+
37
  2 0.58 0.47 0.52 74
38
+
39
  3 0.51 0.42 0.46 160
40
+
41
  4 0.92 0.90 0.91 1185
42
+
43
  5 0.74 0.78 0.76 478
44
+
45
  6 0.68 0.72 0.70 162
46
+
47
  7 0.75 0.78 0.77 680
48
+
49
  accuracy 0.80 3068
50
+
51
  macro avg 0.71 0.70 0.70 3068
52
+
53
  weighted avg 0.80 0.80 0.80 3068
54
 
55
  ## 🧑‍💻 How to Use
 
60
  ```
61
 
62
  def get_out_channels(module):
 
63
  if isinstance(module, nn.Conv2d):
64
  return module.out_channels
65
  elif isinstance(module, nn.BatchNorm2d):