Update README.md
Browse files
README.md
CHANGED
@@ -2,15 +2,18 @@
|
|
2 |
tags:
|
3 |
- llama
|
4 |
- adapter-transformers
|
|
|
5 |
datasets:
|
6 |
- timdettmers/openassistant-guanaco
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# Adapter
|
10 |
|
11 |
-
|
12 |
|
13 |
-
This adapter was created for usage with the
|
14 |
|
15 |
## Usage
|
16 |
|
@@ -20,23 +23,85 @@ First, install `adapters`:
|
|
20 |
pip install -U adapters
|
21 |
```
|
22 |
|
23 |
-
Now, the adapter can be loaded and activated like this:
|
24 |
|
25 |
```python
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
```
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- llama
|
4 |
- adapter-transformers
|
5 |
+
- llama-2
|
6 |
datasets:
|
7 |
- timdettmers/openassistant-guanaco
|
8 |
+
license: apache-2.0
|
9 |
+
pipeline_tag: text-generation
|
10 |
---
|
11 |
|
12 |
+
# OpenAssistant QLoRA Adapter for Llama-2 7B
|
13 |
|
14 |
+
QLoRA adapter for the Llama-2 7B (`meta-llama/Llama-2-7b-hf`) model trained for instruction tuning on the [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco/) dataset.
|
15 |
|
16 |
+
**This adapter was created for usage with the [Adapters](https://github.com/Adapter-Hub/adapters) library.**
|
17 |
|
18 |
## Usage
|
19 |
|
|
|
23 |
pip install -U adapters
|
24 |
```
|
25 |
|
26 |
+
Now, the model and adapter can be loaded and activated like this:
|
27 |
|
28 |
```python
|
29 |
+
import adapters
|
30 |
+
import torch
|
31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
32 |
|
33 |
+
model_id = "meta-llama/Llama-2-13b-hf"
|
34 |
+
adapter_id = "AdapterHub/llama2-7b-qlora-openassistant"
|
35 |
+
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
model_id,
|
38 |
+
device_map="auto",
|
39 |
+
quantization_config=BitsAndBytesConfig(
|
40 |
+
load_in_4bit=True,
|
41 |
+
bnb_4bit_quant_type="nf4",
|
42 |
+
bnb_4bit_use_double_quant=True,
|
43 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
44 |
+
),
|
45 |
+
torch_dtype=torch.bfloat16,
|
46 |
+
)
|
47 |
+
adapters.init(model)
|
48 |
+
|
49 |
+
adapter_name = model.load_adapter(adapter_id, set_active=True)
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
52 |
```
|
53 |
|
54 |
+
### Inference
|
55 |
+
|
56 |
+
Inference can be done via standard methods built in to the Transformers library.
|
57 |
+
We add some helper code to properly prompt the model first:
|
58 |
+
|
59 |
+
```python
|
60 |
+
from transformers import StoppingCriteria
|
61 |
+
|
62 |
+
# stop if model starts to generate "### Human:"
|
63 |
+
class EosListStoppingCriteria(StoppingCriteria):
|
64 |
+
def __init__(self, eos_sequence = [12968, 29901]):
|
65 |
+
self.eos_sequence = eos_sequence
|
66 |
+
|
67 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
68 |
+
last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
|
69 |
+
return self.eos_sequence in last_ids
|
70 |
+
|
71 |
+
def prompt_model(model, text: str):
|
72 |
+
batch = tokenizer(f"### Human: {text} ### Assistant:", return_tensors="pt")
|
73 |
+
batch = batch.to(model.device)
|
74 |
+
|
75 |
+
with torch.cuda.amp.autocast():
|
76 |
+
output_tokens = model.generate(**batch, stopping_criteria=[EosListStoppingCriteria()])
|
77 |
|
78 |
+
# skip prompt when decoding
|
79 |
+
return tokenizer.decode(output_tokens[0, batch["input_ids"].shape[1]:], skip_special_tokens=True)
|
80 |
+
```
|
81 |
+
|
82 |
+
Now, to prompt the model:
|
83 |
+
|
84 |
+
```python
|
85 |
+
prompt_model(model, "Please explain NLP in simple terms.")
|
86 |
+
```
|
87 |
|
88 |
+
### Weight merging
|
89 |
+
|
90 |
+
To decrease inference latency, the LoRA weights can be merged with the base model:
|
91 |
+
```python
|
92 |
+
model.merge_adapter(adapter_name)
|
93 |
+
```
|
94 |
+
|
95 |
+
## Architecture & Training
|
96 |
|
97 |
+
**Training was run with the code in [this notebook](https://github.com/adapter-hub/adapters/blob/main/notebooks/QLoRA_Llama2_Finetuning.ipynb)**.
|
98 |
|
99 |
+
The LoRA architecture closely follows the configuration described in the [QLoRA paper](https://arxiv.org/pdf/2305.14314.pdf):
|
100 |
+
- `r=64`, `alpha=16`
|
101 |
+
- LoRA modules added in output, intermediate and all (Q, K, V) self-attention linear layers
|
102 |
|
103 |
+
The adapter is trained similar to the Guanaco models proposed in the paper:
|
104 |
+
- Dataset: [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco)
|
105 |
+
- Quantization: 4-bit QLoRA
|
106 |
+
- Batch size: 16, LR: 2e-4, max steps: 1875
|
107 |
+
- Sequence length: 512
|