calpt commited on
Commit
427a41b
·
1 Parent(s): 0249635

Initial version.

Browse files
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - bert
4
+ - adapterhub:chunk/conll2000
5
+ - adapter-transformers
6
+ datasets:
7
+ - conll2000
8
+ language:
9
+ - en
10
+ ---
11
+
12
+ # Adapter `AdapterHub/bert-base-uncased-pf-conll2000` for bert-base-uncased
13
+
14
+ An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging.
15
+
16
+ This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
17
+
18
+ ## Usage
19
+
20
+ First, install `adapter-transformers`:
21
+
22
+ ```
23
+ pip install -U adapter-transformers
24
+ ```
25
+ _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
26
+
27
+ Now, the adapter can be loaded and activated like this:
28
+
29
+ ```python
30
+ from transformers import AutoModelWithHeads
31
+
32
+ model = AutoModelWithHeads.from_pretrained("bert-base-uncased")
33
+ adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2000", source="hf")
34
+ model.active_adapters = adapter_name
35
+ ```
36
+
37
+ ## Architecture & Training
38
+
39
+ The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer.
40
+ In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs).
41
+
42
+
43
+ ## Evaluation results
44
+
45
+ Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results.
46
+
47
+ ## Citation
48
+
49
+ If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247):
50
+
51
+ ```bibtex
52
+ @inproceedings{poth-etal-2021-what-to-pre-train-on,
53
+ title={What to Pre-Train on? Efficient Intermediate Task Selection},
54
+ author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych},
55
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
56
+ month = nov,
57
+ year = "2021",
58
+ address = "Online",
59
+ publisher = "Association for Computational Linguistics",
60
+ url = "https://arxiv.org/abs/2104.08247",
61
+ pages = "to appear",
62
+ }
63
+ ```
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "adapter_residual_before_ln": false,
4
+ "cross_adapter": false,
5
+ "inv_adapter": null,
6
+ "inv_adapter_reduction_factor": null,
7
+ "leave_out": [],
8
+ "ln_after": false,
9
+ "ln_before": false,
10
+ "mh_adapter": false,
11
+ "non_linearity": "relu",
12
+ "original_ln_after": true,
13
+ "original_ln_before": true,
14
+ "output_adapter": true,
15
+ "reduction_factor": 16,
16
+ "residual_before_ln": true
17
+ },
18
+ "hidden_size": 768,
19
+ "model_class": "BertModelWithHeads",
20
+ "model_name": "bert-base-uncased",
21
+ "model_type": "bert",
22
+ "name": "conll2000"
23
+ }
head_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "activation_function": "tanh",
4
+ "head_type": "tagging",
5
+ "label2id": {
6
+ "B-ADJP": 1,
7
+ "B-ADVP": 3,
8
+ "B-CONJP": 5,
9
+ "B-INTJ": 7,
10
+ "B-LST": 9,
11
+ "B-NP": 11,
12
+ "B-PP": 13,
13
+ "B-PRT": 15,
14
+ "B-SBAR": 17,
15
+ "B-UCP": 19,
16
+ "B-VP": 21,
17
+ "I-ADJP": 2,
18
+ "I-ADVP": 4,
19
+ "I-CONJP": 6,
20
+ "I-INTJ": 8,
21
+ "I-LST": 10,
22
+ "I-NP": 12,
23
+ "I-PP": 14,
24
+ "I-PRT": 16,
25
+ "I-SBAR": 18,
26
+ "I-UCP": 20,
27
+ "I-VP": 22,
28
+ "O": 0
29
+ },
30
+ "layers": 1,
31
+ "num_labels": 23
32
+ },
33
+ "hidden_size": 768,
34
+ "model_class": "BertModelWithHeads",
35
+ "model_name": "bert-base-uncased",
36
+ "model_type": "bert",
37
+ "name": "conll2000"
38
+ }
pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1bf8d33d52bdbee9c0526e486feb52f1b723246a7d534f84754874eb33ecf3c
3
+ size 3594799
pytorch_model_head.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8abd7c2c31022789edc1daffa0d02de20ed5a498713046a980ced4c0b18409af
3
+ size 71799