|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- amazon_polarity |
|
base_model: distilbert-base-uncased |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-sentiment-amazon |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: amazon_polarity |
|
type: sentiment |
|
args: default |
|
metrics: |
|
- type: accuracy |
|
value: 0.961 |
|
name: Accuracy |
|
- type: loss |
|
value: 0.116 |
|
name: Loss |
|
- type: f1 |
|
value: 0.960 |
|
name: F1 |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: amazon_polarity |
|
type: amazon_polarity |
|
config: amazon_polarity |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.94112 |
|
name: Accuracy |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzlmMzdhYjNmN2U0NDBkM2U5ZDgwNzc3YjE1OGE4MWUxMDY1N2U0ODc0YzllODE5ODIyMzdkOWFhNzVjYmI5MyIsInZlcnNpb24iOjF9.3nlcLa4IpPQtklp7_U9XzC__Q_JVf_cWs6JVVII8trhX5zg_q9HEyQOQs4sRf6O-lIJg8zb3mgobZDJShuSJAQ |
|
- type: precision |
|
value: 0.9321570625232675 |
|
name: Precision |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI2MDY4NGNlYjhjMGMxODBiNTc2ZjM5YzY1NjkxNTU4MDA2ZDIyY2QyZjUyZmE4YWY0N2Y1ODU5YTc2ZDM0NiIsInZlcnNpb24iOjF9.egEikTa2UyHV6SAGkHJKaa8FRwGHoZmJRCmqUQaJqeF5yxkz2V-WeCHoWDrCXsHCbXEs8UhLlyo7Lr83BPfkBg |
|
- type: recall |
|
value: 0.95149 |
|
name: Recall |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E3M2Y3MDU4ZTM2YjdlZjQ0NTY3NGYwMmQ3NTk5ZmZkZWUwZWZiZDZjNjk2ZWE5MmY4MmZiM2FmN2U2M2QyNCIsInZlcnNpb24iOjF9.4VNbiWRmSee4cxuIZ5m7bN30i4BpK7xtHQ1BF8AuFIXkWQgzOmGdX35bLhLGWW8KL3ClA4RDPVBKYCIrw0YUBw |
|
- type: auc |
|
value: 0.9849019044624999 |
|
name: AUC |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTkwODk2ZTUwOTViNjBhYTU0ODk1MDA3MDY1NDkyZDc2YmRlNTQzNDE3YmE3YTVkYjNhN2JmMDAxZWQ0NjUxZSIsInZlcnNpb24iOjF9.YEr6OhqOL7QnqYqjUTQFMdkgU_uS1-vVnkJtn_-1UwSoX754UV_bL9S9KSH3DX4m5QFoRXdZxfeOocm1JbzaCA |
|
- type: f1 |
|
value: 0.9417243188138998 |
|
name: F1 |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzIyMmViNTQ3ZGU0M2I5ZmRjOGI1OWMwZGEwYmE5OGU5YTZlZTkzZjdkOTQ4YzJmOTc2MDliMDY4NDQ1NGRlNyIsInZlcnNpb24iOjF9.p05MGHTfHTAzp4u-qfiIn6Zmh5c3TW_uwjXWgbb982pL_oCILQb6jFXqhPpWXL321fPye7qaUVbGhcTJd8sdCA |
|
- type: loss |
|
value: 0.16342754662036896 |
|
name: loss |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDc4M2IxYjhkNjRhZmYyNzY1MTNkNzhmYjk2NmU1NjFiOTk1NDIzNzI1ZGU3MDYyYjQ2YmQ1NTI2N2NhMyIsInZlcnNpb24iOjF9.Zuf0nzn8XdvwRChKtE9CwJ0pgpc6Zey6oTR3jRiSkvNY2sNbo2bvAgFimGzgGYkDvRvYkTCXzCyxdb27l3QnAg |
|
--- |
|
|
|
# distilbert-sentiment |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a subset of the [amazon-polarity dataset](https://huggingface.co/datasets/amazon_polarity). |
|
|
|
<b>[Update 10/10/23]</b> The model has been retrained on a larger part of the dataset with an improvement on the loss, f1 score and accuracy. It achieves the following results on the evaluation set: |
|
- Loss: 0.116 |
|
- Accuracy: 0.961 |
|
- F1_score: 0.960 |
|
|
|
## Model description |
|
|
|
This sentiment classifier has been trained on 360_000 samples for the training set, 40_000 samples for the validation set and 40_000 samples for the test set. |
|
|
|
## Intended uses & limitations |
|
```python |
|
from transformers import pipeline |
|
|
|
# Create the pipeline |
|
sentiment_classifier = pipeline('text-classification', model='AdamCodd/distilbert-base-uncased-finetuned-sentiment-amazon') |
|
|
|
# Now you can use the pipeline to get the sentiment |
|
result = sentiment_classifier("This product doesn't fit me at all.") |
|
print(result) |
|
#[{'label': 'negative', 'score': 0.9994848966598511}] |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 1270 |
|
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 150 |
|
- num_epochs: 2 |
|
- weight_decay: 0.01 |
|
|
|
### Training results |
|
(Previous results before retraining from the model evaluator) |
|
| key | value | |
|
| --- | ----- | |
|
| eval_accuracy | 0.94112 | |
|
| eval_auc | 0.9849 | |
|
| eval_f1_score | 0.9417 | |
|
| eval_precision | 0.9321 | |
|
| eval_recall | 0.95149 | |
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch lightning 2.0.9 |
|
- Tokenizers 0.14.0 |
|
|
|
If you want to support me, you can [here](https://ko-fi.com/adamcodd). |