Abzu
/

Text Generation
Transformers
English
llama
Danivilanova TheBloke commited on
Commit
ec62d29
0 Parent(s):

Duplicate from TheBloke/orca_mini_v3_70B-GPTQ

Browse files

Co-authored-by: Tom Jobbins <TheBloke@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
LICENSE.txt ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLAMA 2 COMMUNITY LICENSE AGREEMENT
2
+ Llama 2 Version Release Date: July 18, 2023
3
+
4
+ "Agreement" means the terms and conditions for use, reproduction, distribution and
5
+ modification of the Llama Materials set forth herein.
6
+
7
+ "Documentation" means the specifications, manuals and documentation
8
+ accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-
9
+ libraries/llama-downloads/.
10
+
11
+ "Licensee" or "you" means you, or your employer or any other person or entity (if
12
+ you are entering into this Agreement on such person or entity's behalf), of the age
13
+ required under applicable laws, rules or regulations to provide legal consent and that
14
+ has legal authority to bind your employer or such other person or entity if you are
15
+ entering in this Agreement on their behalf.
16
+
17
+ "Llama 2" means the foundational large language models and software and
18
+ algorithms, including machine-learning model code, trained model weights,
19
+ inference-enabling code, training-enabling code, fine-tuning enabling code and other
20
+ elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-
21
+ libraries/llama-downloads/.
22
+
23
+ "Llama Materials" means, collectively, Meta's proprietary Llama 2 and
24
+ Documentation (and any portion thereof) made available under this Agreement.
25
+
26
+ "Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you
27
+ are an entity, your principal place of business is in the EEA or Switzerland) and Meta
28
+ Platforms, Inc. (if you are located outside of the EEA or Switzerland).
29
+
30
+ By clicking "I Accept" below or by using or distributing any portion or element of the
31
+ Llama Materials, you agree to be bound by this Agreement.
32
+
33
+ 1. License Rights and Redistribution.
34
+
35
+ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-
36
+ transferable and royalty-free limited license under Meta's intellectual property or
37
+ other rights owned by Meta embodied in the Llama Materials to use, reproduce,
38
+ distribute, copy, create derivative works of, and make modifications to the Llama
39
+ Materials.
40
+
41
+ b. Redistribution and Use.
42
+
43
+ i. If you distribute or make the Llama Materials, or any derivative works
44
+ thereof, available to a third party, you shall provide a copy of this Agreement to such
45
+ third party.
46
+ ii. If you receive Llama Materials, or any derivative works thereof, from
47
+ a Licensee as part of an integrated end user product, then Section 2 of this
48
+ Agreement will not apply to you.
49
+
50
+ iii. You must retain in all copies of the Llama Materials that you
51
+ distribute the following attribution notice within a "Notice" text file distributed as a
52
+ part of such copies: "Llama 2 is licensed under the LLAMA 2 Community License,
53
+ Copyright (c) Meta Platforms, Inc. All Rights Reserved."
54
+
55
+ iv. Your use of the Llama Materials must comply with applicable laws
56
+ and regulations (including trade compliance laws and regulations) and adhere to the
57
+ Acceptable Use Policy for the Llama Materials (available at
58
+ https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into
59
+ this Agreement.
60
+
61
+ v. You will not use the Llama Materials or any output or results of the
62
+ Llama Materials to improve any other large language model (excluding Llama 2 or
63
+ derivative works thereof).
64
+
65
+ 2. Additional Commercial Terms. If, on the Llama 2 version release date, the
66
+ monthly active users of the products or services made available by or for Licensee,
67
+ or Licensee's affiliates, is greater than 700 million monthly active users in the
68
+ preceding calendar month, you must request a license from Meta, which Meta may
69
+ grant to you in its sole discretion, and you are not authorized to exercise any of the
70
+ rights under this Agreement unless or until Meta otherwise expressly grants you
71
+ such rights.
72
+
73
+ 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE
74
+ LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE
75
+ PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
76
+ EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
77
+ WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR
78
+ FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
79
+ FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING
80
+ THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR
81
+ USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
82
+
83
+ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE
84
+ LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT,
85
+ NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS
86
+ AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL,
87
+ CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
88
+ IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF
89
+ ANY OF THE FOREGOING.
90
+
91
+ 5. Intellectual Property.
92
+
93
+ a. No trademark licenses are granted under this Agreement, and in
94
+ connection with the Llama Materials, neither Meta nor Licensee may use any name
95
+ or mark owned by or associated with the other or any of its affiliates, except as
96
+ required for reasonable and customary use in describing and redistributing the
97
+ Llama Materials.
98
+
99
+ b. Subject to Meta's ownership of Llama Materials and derivatives made by or
100
+ for Meta, with respect to any derivative works and modifications of the Llama
101
+ Materials that are made by you, as between you and Meta, you are and will be the
102
+ owner of such derivative works and modifications.
103
+
104
+ c. If you institute litigation or other proceedings against Meta or any entity
105
+ (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama
106
+ Materials or Llama 2 outputs or results, or any portion of any of the foregoing,
107
+ constitutes infringement of intellectual property or other rights owned or licensable
108
+ by you, then any licenses granted to you under this Agreement shall terminate as of
109
+ the date such litigation or claim is filed or instituted. You will indemnify and hold
110
+ harmless Meta from and against any claim by any third party arising out of or related
111
+ to your use or distribution of the Llama Materials.
112
+
113
+ 6. Term and Termination. The term of this Agreement will commence upon your
114
+ acceptance of this Agreement or access to the Llama Materials and will continue in
115
+ full force and effect until terminated in accordance with the terms and conditions
116
+ herein. Meta may terminate this Agreement if you are in breach of any term or
117
+ condition of this Agreement. Upon termination of this Agreement, you shall delete
118
+ and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the
119
+ termination of this Agreement.
120
+
121
+ 7. Governing Law and Jurisdiction. This Agreement will be governed and
122
+ construed under the laws of the State of California without regard to choice of law
123
+ principles, and the UN Convention on Contracts for the International Sale of Goods
124
+ does not apply to this Agreement. The courts of California shall have exclusive
125
+ jurisdiction of any dispute arising out of this Agreement.
126
+
Notice ADDED
@@ -0,0 +1 @@
 
 
1
+ Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
README.md ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - psmathur/orca_mini_v1_dataset
4
+ - ehartford/dolphin
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: llama2
10
+ model_creator: Pankaj Mathur
11
+ model_link: https://huggingface.co/psmathur/orca_mini_v3_70b
12
+ model_name: Orca Mini v3 70B
13
+ model_type: llama
14
+ pipeline_tag: text-generation
15
+ quantized_by: TheBloke
16
+ duplicated_from: TheBloke/orca_mini_v3_70B-GPTQ
17
+ ---
18
+
19
+ <!-- header start -->
20
+ <div style="width: 100%;">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
+ </div>
23
+ <div style="display: flex; justify-content: space-between; width: 100%;">
24
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
26
+ </div>
27
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
+ </div>
30
+ </div>
31
+ <!-- header end -->
32
+
33
+ # Orca Mini v3 70B - GPTQ
34
+ - Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
35
+ - Original model: [Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b)
36
+
37
+ ## Description
38
+
39
+ This repo contains GPTQ model files for [Pankaj Mathur's Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b).
40
+
41
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
+
43
+ ## Repositories available
44
+
45
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ)
46
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML)
47
+ * [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_70b)
48
+
49
+ ## Prompt template: Orca-Hashes
50
+
51
+ ```
52
+ ### System:
53
+ {system_message}
54
+
55
+ ### User:
56
+ {prompt}
57
+
58
+ ### Assistant:
59
+ ```
60
+
61
+ ## Provided files and GPTQ parameters
62
+
63
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
64
+
65
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
66
+
67
+ All GPTQ files are made with AutoGPTQ.
68
+
69
+ <details>
70
+ <summary>Explanation of GPTQ parameters</summary>
71
+
72
+ - Bits: The bit size of the quantised model.
73
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
74
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
75
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
76
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
77
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
78
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
79
+
80
+ </details>
81
+
82
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
83
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
84
+ | [main](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
85
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
86
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
87
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
89
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
90
+
91
+ ## How to download from branches
92
+
93
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/orca_mini_v3_70B-GPTQ:gptq-4bit-32g-actorder_True`
94
+ - With Git, you can clone a branch with:
95
+ ```
96
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
97
+ ```
98
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
99
+
100
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
101
+
102
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
103
+
104
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
105
+
106
+ 1. Click the **Model tab**.
107
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/orca_mini_v3_70B-GPTQ`.
108
+ - To download from a specific branch, enter for example `TheBloke/orca_mini_v3_70B-GPTQ:gptq-4bit-32g-actorder_True`
109
+ - see Provided Files above for the list of branches for each option.
110
+ 3. Click **Download**.
111
+ 4. The model will start downloading. Once it's finished it will say "Done"
112
+ 5. In the top left, click the refresh icon next to **Model**.
113
+ 6. In the **Model** dropdown, choose the model you just downloaded: `orca_mini_v3_70B-GPTQ`
114
+ 7. The model will automatically load, and is now ready for use!
115
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
116
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
117
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
118
+
119
+ ## How to use this GPTQ model from Python code
120
+
121
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
122
+
123
+ ```
124
+ pip3 install auto-gptq
125
+ ```
126
+
127
+ If you have problems installing AutoGPTQ, please build from source instead:
128
+ ```
129
+ pip3 uninstall -y auto-gptq
130
+ git clone https://github.com/PanQiWei/AutoGPTQ
131
+ cd AutoGPTQ
132
+ pip3 install .
133
+ ```
134
+
135
+ Then try the following example code:
136
+
137
+ ```python
138
+ from transformers import AutoTokenizer, pipeline, logging
139
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
140
+
141
+ model_name_or_path = "TheBloke/orca_mini_v3_70B-GPTQ"
142
+
143
+ use_triton = False
144
+
145
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
146
+
147
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
148
+ use_safetensors=True,
149
+ trust_remote_code=False,
150
+ device="cuda:0",
151
+ use_triton=use_triton,
152
+ quantize_config=None)
153
+
154
+ """
155
+ # To download from a specific branch, use the revision parameter, as in this example:
156
+ # Note that `revision` requires AutoGPTQ 0.3.1 or later!
157
+
158
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
159
+ revision="gptq-4bit-32g-actorder_True",
160
+ use_safetensors=True,
161
+ trust_remote_code=False,
162
+ device="cuda:0",
163
+ quantize_config=None)
164
+ """
165
+
166
+ prompt = "Tell me about AI"
167
+ prompt_template=f'''### System:
168
+ {system_message}
169
+
170
+ ### User:
171
+ {prompt}
172
+
173
+ ### Assistant:
174
+ '''
175
+
176
+ print("\n\n*** Generate:")
177
+
178
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
179
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
180
+ print(tokenizer.decode(output[0]))
181
+
182
+ # Inference can also be done using transformers' pipeline
183
+
184
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
185
+ logging.set_verbosity(logging.CRITICAL)
186
+
187
+ print("*** Pipeline:")
188
+ pipe = pipeline(
189
+ "text-generation",
190
+ model=model,
191
+ tokenizer=tokenizer,
192
+ max_new_tokens=512,
193
+ temperature=0.7,
194
+ top_p=0.95,
195
+ repetition_penalty=1.15
196
+ )
197
+
198
+ print(pipe(prompt_template)[0]['generated_text'])
199
+ ```
200
+
201
+ ## Compatibility
202
+
203
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
204
+
205
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
206
+
207
+ <!-- footer start -->
208
+ ## Discord
209
+
210
+ For further support, and discussions on these models and AI in general, join us at:
211
+
212
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
213
+
214
+ ## Thanks, and how to contribute.
215
+
216
+ Thanks to the [chirper.ai](https://chirper.ai) team!
217
+
218
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
219
+
220
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
221
+
222
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
223
+
224
+ * Patreon: https://patreon.com/TheBlokeAI
225
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
226
+
227
+ **Special thanks to**: Aemon Algiz.
228
+
229
+ **Patreon special mentions**: Ajan Kanaga, David Ziegler, Raymond Fosdick, SuperWojo, Sam, webtim, Steven Wood, knownsqashed, Tony Hughes, Junyu Yang, J, Olakabola, Dan Guido, Stephen Murray, John Villwock, vamX, William Sang, Sean Connelly, LangChain4j, Olusegun Samson, Fen Risland, Derek Yates, Karl Bernard, transmissions 11, Trenton Dambrowitz, Pieter, Preetika Verma, Swaroop Kallakuri, Andrey, Slarti, Jonathan Leane, Michael Levine, Kalila, Joseph William Delisle, Rishabh Srivastava, Deo Leter, Luke Pendergrass, Spencer Kim, Geoffrey Montalvo, Thomas Belote, Jeffrey Morgan, Mandus, ya boyyy, Matthew Berman, Magnesian, Ai Maven, senxiiz, Alps Aficionado, Luke @flexchar, Raven Klaugh, Imad Khwaja, Gabriel Puliatti, Johann-Peter Hartmann, usrbinkat, Spiking Neurons AB, Artur Olbinski, chris gileta, danny, Willem Michiel, WelcomeToTheClub, Deep Realms, alfie_i, Dave, Leonard Tan, NimbleBox.ai, Randy H, Daniel P. Andersen, Pyrater, Will Dee, Elle, Space Cruiser, Gabriel Tamborski, Asp the Wyvern, Illia Dulskyi, Nikolai Manek, Sid, Brandon Frisco, Nathan LeClaire, Edmond Seymore, Enrico Ros, Pedro Madruga, Eugene Pentland, John Detwiler, Mano Prime, Stanislav Ovsiannikov, Alex, Vitor Caleffi, K, biorpg, Michael Davis, Lone Striker, Pierre Kircher, theTransient, Fred von Graf, Sebastain Graf, Vadim, Iucharbius, Clay Pascal, Chadd, Mesiah Bishop, terasurfer, Rainer Wilmers, Alexandros Triantafyllidis, Stefan Sabev, Talal Aujan, Cory Kujawski, Viktor Bowallius, subjectnull, ReadyPlayerEmma, zynix
230
+
231
+
232
+ Thank you to all my generous patrons and donaters!
233
+
234
+ <!-- footer end -->
235
+
236
+ # Original model card: Pankaj Mathur's Orca Mini v3 70B
237
+
238
+
239
+ # orca_mini_v3_70b
240
+
241
+ A Llama2-70b model trained on Orca Style datasets.
242
+
243
+ ### quantized versions
244
+
245
+ Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
246
+
247
+ 1) https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML
248
+
249
+ 2) https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
250
+
251
+
252
+ #### license disclaimer:
253
+
254
+ This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
255
+
256
+
257
+ ## Evaluation
258
+
259
+ We evaluated orca_mini_v3_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
260
+
261
+ Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
262
+
263
+ |||||
264
+ |:------:|:--------:|:-------:|:--------:|
265
+ |**Task**|**Metric**|**Value**|**Stderr**|
266
+ |*arc_challenge*|acc_norm|0.7098|0.0132|
267
+ |*hellaswag*|acc_norm|0.8779|0.0032|
268
+ |*mmlu*|acc_norm|0.6904|0.0351|
269
+ |*truthfulqa_mc*|mc2|0.6196|0.0151|
270
+ |**Total Average**|-|**0.722175**||
271
+
272
+
273
+ **P.S. I am actively seeking sponsorship and partnership opportunities. If you're interested, please connect with me at www.linkedin.com/in/pankajam.**
274
+
275
+ ## Example Usage
276
+
277
+ Here is the prompt format
278
+
279
+ ```
280
+ ### System:
281
+ You are an AI assistant that follows instruction extremely well. Help as much as you can.
282
+
283
+ ### User:
284
+ Tell me about Orcas.
285
+
286
+ ### Assistant:
287
+
288
+ ```
289
+
290
+ Below shows a code example on how to use this model
291
+
292
+ ```python
293
+ import torch
294
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
295
+
296
+ tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_70b")
297
+ model = AutoModelForCausalLM.from_pretrained(
298
+ "psmathur/orca_mini_v3_70b",
299
+ torch_dtype=torch.float16,
300
+ load_in_8bit=True,
301
+ low_cpu_mem_usage=True,
302
+ device_map="auto"
303
+ )
304
+ system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
305
+
306
+ #generate text steps
307
+ instruction = "Tell me about Orcas."
308
+ prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
309
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
310
+ output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
311
+
312
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
313
+
314
+ ```
315
+
316
+
317
+ #### Limitations & Biases:
318
+
319
+ While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
320
+
321
+ Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
322
+
323
+ Exercise caution and cross-check information when necessary.
324
+
325
+
326
+
327
+ ### Citiation:
328
+
329
+ Please kindly cite using the following BibTeX:
330
+
331
+ ```
332
+ @misc{orca_mini_v3_70b,
333
+ author = {Pankaj Mathur},
334
+ title = {orca_mini_v3_70b: An Orca Style Llama2-70b model},
335
+ year = {2023},
336
+ publisher = {HuggingFace},
337
+ journal = {HuggingFace repository},
338
+ howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b},
339
+ }
340
+ ```
341
+
342
+ ```
343
+ @misc{mukherjee2023orca,
344
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
345
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
346
+ year={2023},
347
+ eprint={2306.02707},
348
+ archivePrefix={arXiv},
349
+ primaryClass={cs.CL}
350
+ }
351
+ ```
352
+
353
+ ```
354
+ @software{touvron2023llama2,
355
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
356
+ author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
357
+ Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
358
+ Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
359
+ Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
360
+ Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
361
+ Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
362
+ Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
363
+ year={2023}
364
+ }
365
+ ```
USE_POLICY.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Llama 2 Acceptable Use Policy
2
+
3
+ Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy).
4
+
5
+ ## Prohibited Uses
6
+ We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to:
7
+
8
+ 1. Violate the law or others’ rights, including to:
9
+ 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
10
+ 1. Violence or terrorism
11
+ 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
12
+ 3. Human trafficking, exploitation, and sexual violence
13
+ 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
14
+ 5. Sexual solicitation
15
+ 6. Any other criminal activity
16
+ 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
17
+ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
18
+ 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
19
+ 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
20
+ 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials
21
+ 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
22
+
23
+
24
+
25
+ 2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following:
26
+ 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
27
+ 2. Guns and illegal weapons (including weapon development)
28
+ 3. Illegal drugs and regulated/controlled substances
29
+ 4. Operation of critical infrastructure, transportation technologies, or heavy machinery
30
+ 5. Self-harm or harm to others, including suicide, cutting, and eating disorders
31
+ 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
32
+
33
+
34
+
35
+ 3. Intentionally deceive or mislead others, including use of Llama 2 related to the following:
36
+ 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
37
+ 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
38
+ 3. Generating, promoting, or further distributing spam
39
+ 4. Impersonating another individual without consent, authorization, or legal right
40
+ 5. Representing that the use of Llama 2 or outputs are human-generated
41
+ 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
42
+ 4. Fail to appropriately disclose to end users any known dangers of your AI system
43
+
44
+ Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
45
+
46
+ * Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
47
+ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
48
+ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
49
+ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: [LlamaUseReport@meta.com](mailto:LlamaUseReport@meta.com)
50
+
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TheBloke/Llama-2-70B-fp16",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 8192,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 28672,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 64,
15
+ "num_hidden_layers": 80,
16
+ "num_key_value_heads": 8,
17
+ "pad_token_id": 0,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.32.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 32000
26
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.32.0.dev0",
7
+ "use_cache": false
8
+ }
gptq_model-4bit--1g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1e8e07a8d0bd2e33f5bf3a001a781f70c59c12518014d05384d022fc31b9520
3
+ size 35332203544
quantize_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": -1,
4
+ "damp_percent": 0.1,
5
+ "desc_act": true,
6
+ "sym": true,
7
+ "true_sequential": true,
8
+ "model_name_or_path": null,
9
+ "model_file_base_name": null
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "__type": "AddedToken",
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "clean_up_tokenization_spaces": false,
11
+ "eos_token": {
12
+ "__type": "AddedToken",
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "legacy": false,
20
+ "model_max_length": 1000000000000000019884624838656,
21
+ "pad_token": null,
22
+ "sp_model_kwargs": {},
23
+ "tokenizer_class": "LlamaTokenizer",
24
+ "unk_token": {
25
+ "__type": "AddedToken",
26
+ "content": "<unk>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }