Update README - Run 20251012_194945
Browse files
README.md
CHANGED
|
@@ -5,7 +5,7 @@ tags:
|
|
| 5 |
- image-classification
|
| 6 |
- imagenet
|
| 7 |
- multi-scale
|
| 8 |
-
-
|
| 9 |
- david
|
| 10 |
datasets:
|
| 11 |
- imagenet-1k
|
|
@@ -21,14 +21,18 @@ model-index:
|
|
| 21 |
type: imagenet-1k
|
| 22 |
metrics:
|
| 23 |
- type: accuracy
|
| 24 |
-
value:
|
| 25 |
---
|
| 26 |
|
| 27 |
-
# David: Multi-Scale
|
| 28 |
|
| 29 |
-
**David** is a multi-scale deep learning classifier that uses
|
| 30 |
as class prototypes with role-weighted similarity computation (Rose Loss).
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
## Model Details
|
| 33 |
|
| 34 |
### Architecture
|
|
@@ -41,7 +45,7 @@ as class prototypes with role-weighted similarity computation (Rose Loss).
|
|
| 41 |
|
| 42 |
### Training Configuration
|
| 43 |
- **Dataset**: AbstractPhil/imagenet-clip-features-orderly
|
| 44 |
-
- **Model Variant**: ['
|
| 45 |
- **Epochs**: 10
|
| 46 |
- **Batch Size**: 1024
|
| 47 |
- **Learning Rate**: 0.01
|
|
@@ -51,15 +55,12 @@ as class prototypes with role-weighted similarity computation (Rose Loss).
|
|
| 51 |
## Performance
|
| 52 |
|
| 53 |
### Best Results
|
| 54 |
-
- **Validation Accuracy**:
|
| 55 |
-
- **Best Epoch**:
|
| 56 |
-
- **Final Train Accuracy**:
|
| 57 |
|
| 58 |
### Per-Scale Performance
|
| 59 |
-
- **Scale 256**:
|
| 60 |
-
- **Scale 512**: 73.69%
|
| 61 |
-
- **Scale 768**: 73.94%
|
| 62 |
-
- **Scale 1024**: 74.06%
|
| 63 |
|
| 64 |
|
| 65 |
## Usage
|
|
@@ -77,18 +78,18 @@ AbstractPhil/david-shared-space/
|
|
| 77 |
βββ best_model.json # Latest best model info
|
| 78 |
βββ weights/
|
| 79 |
β βββ david_balanced/
|
| 80 |
-
β βββ
|
| 81 |
β βββ MODEL_SUMMARY.txt # π― Human-readable performance summary
|
| 82 |
β βββ training_history.json # π Epoch-by-epoch training curve
|
| 83 |
-
β βββ
|
| 84 |
-
β βββ
|
| 85 |
β βββ final_model.safetensors
|
| 86 |
β βββ checkpoint_epoch_X_accYY.YY.safetensors
|
| 87 |
β βββ david_config.json
|
| 88 |
β βββ train_config.json
|
| 89 |
βββ runs/
|
| 90 |
βββ david_balanced/
|
| 91 |
-
βββ
|
| 92 |
βββ events.out.tfevents.* # TensorBoard logs
|
| 93 |
```
|
| 94 |
|
|
@@ -102,8 +103,8 @@ from huggingface_hub import hf_hub_download
|
|
| 102 |
|
| 103 |
# Specify model variant and run
|
| 104 |
model_name = "david_balanced"
|
| 105 |
-
run_id = "
|
| 106 |
-
accuracy = "
|
| 107 |
|
| 108 |
# Download config
|
| 109 |
config_path = hf_hub_download(
|
|
@@ -158,7 +159,7 @@ allowing it to capture both coarse and fine-grained features.
|
|
| 158 |
### Shared Representation Space
|
| 159 |
This variation shares multiple versions of clip-vit models in the same representation space.
|
| 160 |
|
| 161 |
-
###
|
| 162 |
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
|
| 163 |
- **Anchor**: Primary class representative
|
| 164 |
- **Need**: Complementary direction
|
|
@@ -193,11 +194,11 @@ score = w_anchor * sim(z, anchor) + w_need * sim(z, need) + ...
|
|
| 193 |
|
| 194 |
```bibtex
|
| 195 |
@software{david_classifier_2025,
|
| 196 |
-
title = {David: Multi-Scale
|
| 197 |
author = {AbstractPhil},
|
| 198 |
year = {2025},
|
| 199 |
url = {https://huggingface.co/AbstractPhil/david-shared-space},
|
| 200 |
-
note = {Run ID:
|
| 201 |
}
|
| 202 |
```
|
| 203 |
|
|
@@ -207,9 +208,9 @@ MIT License
|
|
| 207 |
|
| 208 |
## Acknowledgments
|
| 209 |
|
| 210 |
-
Built with
|
| 211 |
Special thanks to Claude (Anthropic) for debugging assistance.
|
| 212 |
|
| 213 |
---
|
| 214 |
|
| 215 |
-
*Generated on 2025-10-12 19:
|
|
|
|
| 5 |
- image-classification
|
| 6 |
- imagenet
|
| 7 |
- multi-scale
|
| 8 |
+
- feature-geometry
|
| 9 |
- david
|
| 10 |
datasets:
|
| 11 |
- imagenet-1k
|
|
|
|
| 21 |
type: imagenet-1k
|
| 22 |
metrics:
|
| 23 |
- type: accuracy
|
| 24 |
+
value: 69.48
|
| 25 |
---
|
| 26 |
|
| 27 |
+
# David: Multi-Scale Feature Classifier
|
| 28 |
|
| 29 |
+
**David** is a multi-scale deep learning classifier that uses feature geometry (pentachora/4-simplexes)
|
| 30 |
as class prototypes with role-weighted similarity computation (Rose Loss).
|
| 31 |
|
| 32 |
+
This version is using multiple variations of clip-vit inputs simultaneously into shared space.
|
| 33 |
+
The experiment will determine if entirely deviant variations such as clip-vit-b-patch32 and patch16 can
|
| 34 |
+
exist simultaneously in the same shared space with the correct checks and spacings applied.
|
| 35 |
+
|
| 36 |
## Model Details
|
| 37 |
|
| 38 |
### Architecture
|
|
|
|
| 45 |
|
| 46 |
### Training Configuration
|
| 47 |
- **Dataset**: AbstractPhil/imagenet-clip-features-orderly
|
| 48 |
+
- **Model Variant**: ['clip_vit_b16', 'clip_vit_laion_b32']
|
| 49 |
- **Epochs**: 10
|
| 50 |
- **Batch Size**: 1024
|
| 51 |
- **Learning Rate**: 0.01
|
|
|
|
| 55 |
## Performance
|
| 56 |
|
| 57 |
### Best Results
|
| 58 |
+
- **Validation Accuracy**: 69.48%
|
| 59 |
+
- **Best Epoch**: 0
|
| 60 |
+
- **Final Train Accuracy**: 58.63%
|
| 61 |
|
| 62 |
### Per-Scale Performance
|
| 63 |
+
- **Scale 256**: 69.48%
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
## Usage
|
|
|
|
| 78 |
βββ best_model.json # Latest best model info
|
| 79 |
βββ weights/
|
| 80 |
β βββ david_balanced/
|
| 81 |
+
β βββ 20251012_194945/
|
| 82 |
β βββ MODEL_SUMMARY.txt # π― Human-readable performance summary
|
| 83 |
β βββ training_history.json # π Epoch-by-epoch training curve
|
| 84 |
+
β βββ best_model_acc69.48.safetensors # β Accuracy in filename!
|
| 85 |
+
β βββ best_model_acc69.48_metadata.json
|
| 86 |
β βββ final_model.safetensors
|
| 87 |
β βββ checkpoint_epoch_X_accYY.YY.safetensors
|
| 88 |
β βββ david_config.json
|
| 89 |
β βββ train_config.json
|
| 90 |
βββ runs/
|
| 91 |
βββ david_balanced/
|
| 92 |
+
βββ 20251012_194945/
|
| 93 |
βββ events.out.tfevents.* # TensorBoard logs
|
| 94 |
```
|
| 95 |
|
|
|
|
| 103 |
|
| 104 |
# Specify model variant and run
|
| 105 |
model_name = "david_balanced"
|
| 106 |
+
run_id = "20251012_194945"
|
| 107 |
+
accuracy = "69.48" # From MODELS_INDEX.json
|
| 108 |
|
| 109 |
# Download config
|
| 110 |
config_path = hf_hub_download(
|
|
|
|
| 159 |
### Shared Representation Space
|
| 160 |
This variation shares multiple versions of clip-vit models in the same representation space.
|
| 161 |
|
| 162 |
+
### Feature Geometry
|
| 163 |
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
|
| 164 |
- **Anchor**: Primary class representative
|
| 165 |
- **Need**: Complementary direction
|
|
|
|
| 194 |
|
| 195 |
```bibtex
|
| 196 |
@software{david_classifier_2025,
|
| 197 |
+
title = {David: Multi-Scale Feature Classifier},
|
| 198 |
author = {AbstractPhil},
|
| 199 |
year = {2025},
|
| 200 |
url = {https://huggingface.co/AbstractPhil/david-shared-space},
|
| 201 |
+
note = {Run ID: 20251012_194945}
|
| 202 |
}
|
| 203 |
```
|
| 204 |
|
|
|
|
| 208 |
|
| 209 |
## Acknowledgments
|
| 210 |
|
| 211 |
+
Built with feature lattice geometry and multi-scale deep learning.
|
| 212 |
Special thanks to Claude (Anthropic) for debugging assistance.
|
| 213 |
|
| 214 |
---
|
| 215 |
|
| 216 |
+
*Generated on 2025-10-12 19:53:35*
|