Update README.md
Browse files
README.md
CHANGED
|
@@ -3,205 +3,148 @@ base_model: gpt2
|
|
| 3 |
library_name: peft
|
| 4 |
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
-
- base_model:adapter:gpt2
|
| 7 |
-
- lora
|
| 8 |
-
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
| 19 |
### Model Description
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
-
- **Model type:** [More Information Needed]
|
| 29 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
-
- **License:** [More Information Needed]
|
| 31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
-
|
| 33 |
-
### Model Sources [optional]
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
- **Paper [optional]:** [More Information Needed]
|
| 39 |
-
- **Demo [optional]:** [More Information Needed]
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
| 43 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
-
|
| 45 |
### Direct Use
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
[More Information Needed]
|
| 50 |
-
|
| 51 |
-
### Downstream Use [optional]
|
| 52 |
-
|
| 53 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
-
|
| 55 |
-
[More Information Needed]
|
| 56 |
|
| 57 |
### Out-of-Scope Use
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
[More Information Needed]
|
| 62 |
|
| 63 |
## Bias, Risks, and Limitations
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
|
| 69 |
### Recommendations
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 74 |
|
| 75 |
## How to Get Started with the Model
|
| 76 |
|
| 77 |
-
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
-
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
### Training Procedure
|
| 90 |
-
|
| 91 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
-
|
| 93 |
-
#### Preprocessing [optional]
|
| 94 |
-
|
| 95 |
-
[More Information Needed]
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
#### Training Hyperparameters
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
|
| 108 |
## Evaluation
|
| 109 |
|
| 110 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 111 |
-
|
| 112 |
-
### Testing Data, Factors & Metrics
|
| 113 |
-
|
| 114 |
-
#### Testing Data
|
| 115 |
-
|
| 116 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
-
|
| 118 |
-
[More Information Needed]
|
| 119 |
-
|
| 120 |
-
#### Factors
|
| 121 |
-
|
| 122 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
-
|
| 124 |
-
[More Information Needed]
|
| 125 |
-
|
| 126 |
-
#### Metrics
|
| 127 |
-
|
| 128 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
-
|
| 130 |
-
[More Information Needed]
|
| 131 |
-
|
| 132 |
### Results
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
## Model Examination [optional]
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
[More Information Needed]
|
| 145 |
|
| 146 |
## Environmental Impact
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
-
|
| 152 |
-
- **Hardware Type:** [More Information Needed]
|
| 153 |
-
- **Hours used:** [More Information Needed]
|
| 154 |
-
- **Cloud Provider:** [More Information Needed]
|
| 155 |
-
- **Compute Region:** [More Information Needed]
|
| 156 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
-
|
| 158 |
-
## Technical Specifications [optional]
|
| 159 |
-
|
| 160 |
-
### Model Architecture and Objective
|
| 161 |
-
|
| 162 |
-
[More Information Needed]
|
| 163 |
-
|
| 164 |
-
### Compute Infrastructure
|
| 165 |
-
|
| 166 |
-
[More Information Needed]
|
| 167 |
-
|
| 168 |
-
#### Hardware
|
| 169 |
-
|
| 170 |
-
[More Information Needed]
|
| 171 |
-
|
| 172 |
-
#### Software
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
## Citation
|
| 177 |
|
| 178 |
-
|
| 179 |
|
| 180 |
**BibTeX:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
-
[More Information Needed]
|
| 183 |
-
|
| 184 |
-
**APA:**
|
| 185 |
-
|
| 186 |
-
[More Information Needed]
|
| 187 |
-
|
| 188 |
-
## Glossary [optional]
|
| 189 |
-
|
| 190 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
-
|
| 192 |
-
[More Information Needed]
|
| 193 |
-
|
| 194 |
-
## More Information [optional]
|
| 195 |
-
|
| 196 |
-
[More Information Needed]
|
| 197 |
-
|
| 198 |
-
## Model Card Authors [optional]
|
| 199 |
-
|
| 200 |
-
[More Information Needed]
|
| 201 |
-
|
| 202 |
-
## Model Card Contact
|
| 203 |
-
|
| 204 |
-
[More Information Needed]
|
| 205 |
-
### Framework versions
|
| 206 |
-
|
| 207 |
-
- PEFT 0.17.1
|
|
|
|
| 3 |
library_name: peft
|
| 4 |
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
+
- base_model:adapter:gpt2
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
- tigrinya
|
| 10 |
+
datasets:
|
| 11 |
+
- custom
|
| 12 |
+
metrics:
|
| 13 |
+
- perplexity
|
| 14 |
+
language:
|
| 15 |
+
- ti
|
| 16 |
+
license: mit
|
| 17 |
---
|
| 18 |
|
| 19 |
+
# GPT-2 Tigrinya (LoRA Fine-Tuned)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
## Model Details
|
| 22 |
|
| 23 |
### Model Description
|
| 24 |
|
| 25 |
+
This model is a **GPT-2 small** (124M parameters) fine-tuned using **LoRA (Low-Rank Adaptation)** on a custom Tigrinya dataset.
|
| 26 |
+
It is designed for **Tigrinya text generation**, including chatbot/dialogue, storytelling, and text continuation.
|
| 27 |
|
| 28 |
+
- **Developed by:** Abrhaley (MSc Student, Warsaw University of Technology)
|
| 29 |
+
- **Model type:** Causal Language Model (decoder-only Transformer)
|
| 30 |
+
- **Languages (NLP):** Tigrinya (`ti`)
|
| 31 |
+
- **License:** MIT
|
| 32 |
+
- **Finetuned from model:** [gpt2](https://huggingface.co/gpt2)
|
| 33 |
+
- **Framework versions:** Transformers 4.x, PEFT 0.17.1, PyTorch 2.x
|
| 34 |
|
| 35 |
+
---
|
| 36 |
|
| 37 |
+
## Model Sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
- **Repository (GitHub):** [abrhaley/gpt2-tigrinya-lora](https://github.com/abrhaleyarefaine1997/gpt2-tigrinya-lora)
|
| 40 |
+
- **Hugging Face Model Hub:** [abrhaley/gpt2-tigrinya-lora](https://huggingface.co/abrhaley/gpt2-tigrinya-lora)
|
| 41 |
+
- **Paper:** N/A
|
| 42 |
+
- **Demo (Gradio):** coming soon via Hugging Face Spaces
|
| 43 |
|
| 44 |
+
---
|
|
|
|
|
|
|
| 45 |
|
| 46 |
## Uses
|
| 47 |
|
|
|
|
|
|
|
| 48 |
### Direct Use
|
| 49 |
+
- Generate Tigrinya text (stories, conversation, completions)
|
| 50 |
+
- Chatbots and dialogue systems in Tigrinya
|
| 51 |
+
- Creative text applications (poetry, narratives, cultural content)
|
| 52 |
|
| 53 |
+
### Downstream Use
|
| 54 |
+
- Fine-tuning for specialized domains (news, education, healthcare in Tigrinya)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
### Out-of-Scope Use
|
| 57 |
+
- Generating factual or authoritative knowledge (may hallucinate)
|
| 58 |
+
- Sensitive/critical applications (medical, legal, political decisions)
|
| 59 |
+
- Harmful or offensive text generation
|
| 60 |
|
| 61 |
+
---
|
|
|
|
|
|
|
| 62 |
|
| 63 |
## Bias, Risks, and Limitations
|
| 64 |
|
| 65 |
+
- Dataset does not cover all Tigrinya dialects equally.
|
| 66 |
+
- Model may generate **biased, offensive, or incoherent outputs**.
|
| 67 |
+
- Not reliable for factual Q&A.
|
| 68 |
+
- Small model (GPT-2 small) → may struggle with long contexts.
|
| 69 |
|
| 70 |
### Recommendations
|
| 71 |
+
Users should carefully **review outputs** before use.
|
| 72 |
+
Avoid deploying the model in sensitive applications without human oversight.
|
| 73 |
|
| 74 |
+
---
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## How to Get Started with the Model
|
| 77 |
|
| 78 |
+
```python
|
| 79 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 80 |
|
| 81 |
+
model_id = "abrhaley/gpt2-tigrinya-lora"
|
| 82 |
|
| 83 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 84 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 85 |
|
| 86 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 87 |
|
| 88 |
+
prompt = "ኣብ ኣዲስ ኣበባ"
|
| 89 |
+
print(generator(prompt, max_length=100, do_sample=True))
|
| 90 |
|
| 91 |
+
## Training Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
### Training Data
|
| 94 |
+
- **Source**: Custom Tigrinya text corpus (news + literature + web text)
|
| 95 |
+
- **Split**: Train/validation prepared manually
|
| 96 |
|
| 97 |
+
### Training Procedure
|
| 98 |
+
- **Base model**: GPT-2 small (124M parameters)
|
| 99 |
+
- **Fine-tuning method**: LoRA (PEFT) applied on attention layers
|
| 100 |
+
- **LoRA config**: r=8, alpha=32, dropout=0.05
|
| 101 |
|
| 102 |
+
### Hyperparameters
|
| 103 |
+
- **Batch size (effective)**: 8
|
| 104 |
+
- **Learning rate**: 2e-4
|
| 105 |
+
- **Optimizer**: AdamW
|
| 106 |
+
- **Epochs**: 1 (demo training; extendable)
|
| 107 |
+
- **Precision**: FP16 (when GPU available)
|
| 108 |
|
| 109 |
+
---
|
| 110 |
|
| 111 |
## Evaluation
|
| 112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
### Results
|
| 114 |
+
- **Training Loss**: 1.67
|
| 115 |
+
- **Validation Loss**: 1.61
|
| 116 |
+
- **Perplexity (PPL)**: ≈ 5.0
|
| 117 |
|
| 118 |
+
### Metrics
|
| 119 |
+
- **Primary metric**: Perplexity (lower is better → more fluent text)
|
| 120 |
+
- **Summary**: The model achieves ~5.0 PPL on validation and produces fluent/natural Tigrinya completions.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
---
|
|
|
|
|
|
|
| 123 |
|
| 124 |
## Environmental Impact
|
| 125 |
+
- **Hardware**: NVIDIA T4 (Google Colab)
|
| 126 |
+
- **Training time**: ~5.5 hours
|
| 127 |
+
- **Cloud Provider**: Google Cloud (via Colab)
|
| 128 |
+
- **Carbon estimate**: <1kg CO₂eq (low emissions, small-scale run).
|
| 129 |
|
| 130 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
## Technical Specifications
|
| 133 |
+
- **Architecture**: GPT-2 small (decoder-only Transformer)
|
| 134 |
+
- **LoRA applied to**: attention layers (`c_attn`, `c_proj`)
|
| 135 |
+
- **Framework**: Hugging Face Transformers + PEFT
|
| 136 |
+
- **Precision**: FP16 mixed-precision (on GPU)
|
| 137 |
|
| 138 |
+
## Citation
|
| 139 |
|
| 140 |
+
If you use this model, please cite it as:
|
| 141 |
|
| 142 |
**BibTeX:**
|
| 143 |
+
```bibtex
|
| 144 |
+
@misc{abrhaley2025gpt2tigrinya,
|
| 145 |
+
title = {GPT-2 Tigrinya LoRA Fine-Tuned},
|
| 146 |
+
author = {Abrhaley},
|
| 147 |
+
year = {2025},
|
| 148 |
+
url = {https://huggingface.co/abrhaley/gpt2-tigrinya-lora}
|
| 149 |
+
}
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|