Abrhaley commited on
Commit
9ac0361
·
verified ·
1 Parent(s): c04b521

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -149
README.md CHANGED
@@ -3,205 +3,148 @@ base_model: gpt2
3
  library_name: peft
4
  pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:gpt2
7
- - lora
8
- - transformers
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
 
22
 
 
 
 
 
 
 
23
 
 
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
 
35
- <!-- Provide the basic links for the model. -->
 
 
 
36
 
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
  ## Uses
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
  ### Direct Use
 
 
 
46
 
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
 
57
  ### Out-of-Scope Use
 
 
 
58
 
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
 
63
  ## Bias, Risks, and Limitations
64
 
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
 
68
 
69
  ### Recommendations
 
 
70
 
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
 
75
  ## How to Get Started with the Model
76
 
77
- Use the code below to get started with the model.
 
78
 
79
- [More Information Needed]
80
 
81
- ## Training Details
 
82
 
83
- ### Training Data
84
 
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
86
 
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
 
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
101
 
102
- #### Speeds, Sizes, Times [optional]
 
 
 
103
 
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
105
 
106
- [More Information Needed]
107
 
108
  ## Evaluation
109
 
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
  ### Results
 
 
 
133
 
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
 
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
 
146
  ## Environmental Impact
 
 
 
 
147
 
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
 
174
- [More Information Needed]
 
 
 
 
175
 
176
- ## Citation [optional]
177
 
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
 
180
  **BibTeX:**
 
 
 
 
 
 
 
181
 
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
205
- ### Framework versions
206
-
207
- - PEFT 0.17.1
 
3
  library_name: peft
4
  pipeline_tag: text-generation
5
  tags:
6
+ - base_model:adapter:gpt2
7
+ - lora
8
+ - transformers
9
+ - tigrinya
10
+ datasets:
11
+ - custom
12
+ metrics:
13
+ - perplexity
14
+ language:
15
+ - ti
16
+ license: mit
17
  ---
18
 
19
+ # GPT-2 Tigrinya (LoRA Fine-Tuned)
 
 
 
 
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ This model is a **GPT-2 small** (124M parameters) fine-tuned using **LoRA (Low-Rank Adaptation)** on a custom Tigrinya dataset.
26
+ It is designed for **Tigrinya text generation**, including chatbot/dialogue, storytelling, and text continuation.
27
 
28
+ - **Developed by:** Abrhaley (MSc Student, Warsaw University of Technology)
29
+ - **Model type:** Causal Language Model (decoder-only Transformer)
30
+ - **Languages (NLP):** Tigrinya (`ti`)
31
+ - **License:** MIT
32
+ - **Finetuned from model:** [gpt2](https://huggingface.co/gpt2)
33
+ - **Framework versions:** Transformers 4.x, PEFT 0.17.1, PyTorch 2.x
34
 
35
+ ---
36
 
37
+ ## Model Sources
 
 
 
 
 
 
 
 
38
 
39
+ - **Repository (GitHub):** [abrhaley/gpt2-tigrinya-lora](https://github.com/abrhaleyarefaine1997/gpt2-tigrinya-lora)
40
+ - **Hugging Face Model Hub:** [abrhaley/gpt2-tigrinya-lora](https://huggingface.co/abrhaley/gpt2-tigrinya-lora)
41
+ - **Paper:** N/A
42
+ - **Demo (Gradio):** coming soon via Hugging Face Spaces
43
 
44
+ ---
 
 
45
 
46
  ## Uses
47
 
 
 
48
  ### Direct Use
49
+ - Generate Tigrinya text (stories, conversation, completions)
50
+ - Chatbots and dialogue systems in Tigrinya
51
+ - Creative text applications (poetry, narratives, cultural content)
52
 
53
+ ### Downstream Use
54
+ - Fine-tuning for specialized domains (news, education, healthcare in Tigrinya)
 
 
 
 
 
 
 
55
 
56
  ### Out-of-Scope Use
57
+ - Generating factual or authoritative knowledge (may hallucinate)
58
+ - Sensitive/critical applications (medical, legal, political decisions)
59
+ - Harmful or offensive text generation
60
 
61
+ ---
 
 
62
 
63
  ## Bias, Risks, and Limitations
64
 
65
+ - Dataset does not cover all Tigrinya dialects equally.
66
+ - Model may generate **biased, offensive, or incoherent outputs**.
67
+ - Not reliable for factual Q&A.
68
+ - Small model (GPT-2 small) → may struggle with long contexts.
69
 
70
  ### Recommendations
71
+ Users should carefully **review outputs** before use.
72
+ Avoid deploying the model in sensitive applications without human oversight.
73
 
74
+ ---
 
 
75
 
76
  ## How to Get Started with the Model
77
 
78
+ ```python
79
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
80
 
81
+ model_id = "abrhaley/gpt2-tigrinya-lora"
82
 
83
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
84
+ model = AutoModelForCausalLM.from_pretrained(model_id)
85
 
86
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
87
 
88
+ prompt = "ኣብ ኣዲስ ኣበባ"
89
+ print(generator(prompt, max_length=100, do_sample=True))
90
 
91
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
92
 
93
+ ### Training Data
94
+ - **Source**: Custom Tigrinya text corpus (news + literature + web text)
95
+ - **Split**: Train/validation prepared manually
96
 
97
+ ### Training Procedure
98
+ - **Base model**: GPT-2 small (124M parameters)
99
+ - **Fine-tuning method**: LoRA (PEFT) applied on attention layers
100
+ - **LoRA config**: r=8, alpha=32, dropout=0.05
101
 
102
+ ### Hyperparameters
103
+ - **Batch size (effective)**: 8
104
+ - **Learning rate**: 2e-4
105
+ - **Optimizer**: AdamW
106
+ - **Epochs**: 1 (demo training; extendable)
107
+ - **Precision**: FP16 (when GPU available)
108
 
109
+ ---
110
 
111
  ## Evaluation
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  ### Results
114
+ - **Training Loss**: 1.67
115
+ - **Validation Loss**: 1.61
116
+ - **Perplexity (PPL)**: ≈ 5.0
117
 
118
+ ### Metrics
119
+ - **Primary metric**: Perplexity (lower is better → more fluent text)
120
+ - **Summary**: The model achieves ~5.0 PPL on validation and produces fluent/natural Tigrinya completions.
 
 
 
 
121
 
122
+ ---
 
 
123
 
124
  ## Environmental Impact
125
+ - **Hardware**: NVIDIA T4 (Google Colab)
126
+ - **Training time**: ~5.5 hours
127
+ - **Cloud Provider**: Google Cloud (via Colab)
128
+ - **Carbon estimate**: <1kg CO₂eq (low emissions, small-scale run).
129
 
130
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
+ ## Technical Specifications
133
+ - **Architecture**: GPT-2 small (decoder-only Transformer)
134
+ - **LoRA applied to**: attention layers (`c_attn`, `c_proj`)
135
+ - **Framework**: Hugging Face Transformers + PEFT
136
+ - **Precision**: FP16 mixed-precision (on GPU)
137
 
138
+ ## Citation
139
 
140
+ If you use this model, please cite it as:
141
 
142
  **BibTeX:**
143
+ ```bibtex
144
+ @misc{abrhaley2025gpt2tigrinya,
145
+ title = {GPT-2 Tigrinya LoRA Fine-Tuned},
146
+ author = {Abrhaley},
147
+ year = {2025},
148
+ url = {https://huggingface.co/abrhaley/gpt2-tigrinya-lora}
149
+ }
150