Upload convnets.py
Browse files- convnets.py +79 -0
convnets.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
CNN models for binary and multi-class classifications
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
|
8 |
+
class Convnet(nn.Module):
|
9 |
+
"""
|
10 |
+
Convolutional Neural Network for binary classification
|
11 |
+
|
12 |
+
input args: n_classes (int) --> number of classes
|
13 |
+
|
14 |
+
Input shape: [1, 60, 60]
|
15 |
+
|
16 |
+
Matrix shape (Conv layer):
|
17 |
+
|
18 |
+
Input shape: [N, C_in, H, W]
|
19 |
+
- N: batch_size
|
20 |
+
- C_in: number of input channels
|
21 |
+
- H: height of input planes
|
22 |
+
- W: width of input planes
|
23 |
+
|
24 |
+
- Conv2d(1, 64, (5, 3), 1) --> [64, 56, 58]
|
25 |
+
- MaxPool2d(kernel_size=(2, 1)) --> [64, 28, 58]
|
26 |
+
- Conv2d(64, 128, (5, 3), 1) --> [128, 24, 56]
|
27 |
+
- MaxPool2d(kernel_size=(2, 1)) --> [128, 12, 56]
|
28 |
+
- Conv2d(128, 256, (5, 3), 1) --> [256, 8, 54]
|
29 |
+
- MaxPool2d(kernel_size=(2, 1)) --> [256, 4, 54]
|
30 |
+
|
31 |
+
Matrix shape (Fully connected layer):
|
32 |
+
- Linear(256 * 4 * 54, 1024) --> [1024]
|
33 |
+
- Linear(1024, 512) --> [512]
|
34 |
+
- Linear(512, 128) --> [128]
|
35 |
+
- Linear(128, 64) --> [64]
|
36 |
+
- Linear(64, n_classes) --> [n_classes]
|
37 |
+
|
38 |
+
Softmax() --> to probability
|
39 |
+
"""
|
40 |
+
def __init__(self, n_classes: int) -> None:
|
41 |
+
super().__init__()
|
42 |
+
self.cnn = nn.Sequential(
|
43 |
+
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=(5, 3), stride=1),
|
44 |
+
nn.BatchNorm2d(64),
|
45 |
+
nn.LeakyReLU(negative_slope=0.01),
|
46 |
+
nn.MaxPool2d(kernel_size=(2, 1)),
|
47 |
+
nn.Conv2d(64, 128, (5, 3), 1),
|
48 |
+
nn.BatchNorm2d(128),
|
49 |
+
nn.LeakyReLU(negative_slope=0.01),
|
50 |
+
nn.MaxPool2d(kernel_size=(2, 1)),
|
51 |
+
nn.Conv2d(128, 256, (5, 3), 1),
|
52 |
+
nn.BatchNorm2d(256),
|
53 |
+
nn.LeakyReLU(negative_slope=0.01),
|
54 |
+
nn.MaxPool2d(kernel_size=(2, 1)),
|
55 |
+
)
|
56 |
+
self.dropout = nn.Sequential(nn.Dropout(0.5))
|
57 |
+
self.fc = nn.Sequential(
|
58 |
+
nn.Linear(256 * 4 * 54, 1024),
|
59 |
+
nn.Linear(1024, 512),
|
60 |
+
nn.Linear(512, 128),
|
61 |
+
nn.Linear(128, 64),
|
62 |
+
nn.Linear(64, n_classes),
|
63 |
+
nn.Softmax()
|
64 |
+
)
|
65 |
+
for layer in self.cnn:
|
66 |
+
if isinstance(layer, nn.Conv2d):
|
67 |
+
nn.init.xavier_normal_(layer.weight)
|
68 |
+
nn.init.constant_(layer.bias, 0.0)
|
69 |
+
|
70 |
+
|
71 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
72 |
+
"""
|
73 |
+
forward prop
|
74 |
+
"""
|
75 |
+
x = self.cnn(x)
|
76 |
+
x = self.dropout(x)
|
77 |
+
x = x.view(x.size(0), -1)
|
78 |
+
x = self.fc(x)
|
79 |
+
return x
|