techysanoj's picture
Update README.md
e95af8d
|
raw
history blame
2.86 kB
metadata
license: cc-by-4.0
datasets:
  - squad
  - squad_v2
language:
  - en
  - hi
metrics:
  - accuracy
pipeline_tag: question-answering

avishkaarak-ekta-hindi

This is the avishkaarak-ekta-hindi model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.

Overview

Language model: avishkaarak-ekta-hindi
Language: English, Hindi(Upcoming)
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example QA pipeline on Haystack
Infrastructure: 4x Tesla v100

Hyperparameters

batch_size = 4
n_epochs = 50
base_LM_model = "roberta-base"
max_seq_len = 512
learning_rate = 9e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64

Usage

In Haystack

Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:

reader = FARMReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi")
# or 
reader = TransformersReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi",tokenizer="deepset/roberta-base-squad2")

For a complete example of AVISHKAARAM/avishkaarak-ekta-hindi being used for Question Answering, check out the Tutorials in Haystack Documentation

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Performance

Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 79.87029394424324,
"f1": 82.91251169582613,

"total": 11873,
"HasAns_exact": 77.93522267206478,
"HasAns_f1": 84.02838248389763,
"HasAns_total": 5928,
"NoAns_exact": 81.79983179142137,
"NoAns_f1": 81.79983179142137,
"NoAns_total": 5945

Authors

Shashwat Bindal: optimus.coders.@ai

Sanoj: optimus.coders.@ai