ALM-AHME commited on
Commit
af2554f
·
1 Parent(s): 855d3cf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-AH
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: Augmented-Final
19
+ split: train
20
+ args: Augmented-Final
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9681397738951696
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-AH
31
+
32
+ This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1143
35
+ - Accuracy: 0.9681
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-06
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.9
63
+ - num_epochs: 12
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9527 | 1.0 | 122 | 1.9746 | 0.1716 |
70
+ | 1.818 | 2.0 | 244 | 1.7423 | 0.3628 |
71
+ | 1.5044 | 3.0 | 366 | 1.3707 | 0.5046 |
72
+ | 1.1173 | 4.0 | 488 | 0.9796 | 0.6300 |
73
+ | 0.8714 | 5.0 | 610 | 0.7475 | 0.7379 |
74
+ | 0.8631 | 6.0 | 732 | 0.5978 | 0.7729 |
75
+ | 0.628 | 7.0 | 854 | 0.4791 | 0.8212 |
76
+ | 0.5588 | 8.0 | 976 | 0.3517 | 0.8705 |
77
+ | 0.5632 | 9.0 | 1098 | 0.2564 | 0.9168 |
78
+ | 0.3693 | 10.0 | 1220 | 0.1875 | 0.9455 |
79
+ | 0.321 | 11.0 | 1342 | 0.1525 | 0.9424 |
80
+ | 0.2761 | 12.0 | 1464 | 0.1143 | 0.9681 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.30.2
86
+ - Pytorch 2.0.1+cu118
87
+ - Datasets 2.13.1
88
+ - Tokenizers 0.13.3