update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-AH
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: Augmented-Final
|
19 |
+
split: train
|
20 |
+
args: Augmented-Final
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9681397738951696
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-AH
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1143
|
35 |
+
- Accuracy: 0.9681
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-06
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.9
|
63 |
+
- num_epochs: 12
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.9527 | 1.0 | 122 | 1.9746 | 0.1716 |
|
70 |
+
| 1.818 | 2.0 | 244 | 1.7423 | 0.3628 |
|
71 |
+
| 1.5044 | 3.0 | 366 | 1.3707 | 0.5046 |
|
72 |
+
| 1.1173 | 4.0 | 488 | 0.9796 | 0.6300 |
|
73 |
+
| 0.8714 | 5.0 | 610 | 0.7475 | 0.7379 |
|
74 |
+
| 0.8631 | 6.0 | 732 | 0.5978 | 0.7729 |
|
75 |
+
| 0.628 | 7.0 | 854 | 0.4791 | 0.8212 |
|
76 |
+
| 0.5588 | 8.0 | 976 | 0.3517 | 0.8705 |
|
77 |
+
| 0.5632 | 9.0 | 1098 | 0.2564 | 0.9168 |
|
78 |
+
| 0.3693 | 10.0 | 1220 | 0.1875 | 0.9455 |
|
79 |
+
| 0.321 | 11.0 | 1342 | 0.1525 | 0.9424 |
|
80 |
+
| 0.2761 | 12.0 | 1464 | 0.1143 | 0.9681 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.30.2
|
86 |
+
- Pytorch 2.0.1+cu118
|
87 |
+
- Datasets 2.13.1
|
88 |
+
- Tokenizers 0.13.3
|