AIGym commited on
Commit
b6dfb28
1 Parent(s): e449702

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -127
README.md CHANGED
@@ -11,21 +11,29 @@ tags: []
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
  - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
  - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
  - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
@@ -55,11 +63,6 @@ This is the model card of a 🤗 transformers model that has been pushed on the
55
 
56
  [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
@@ -67,133 +70,77 @@ This is the model card of a 🤗 transformers model that has been pushed on the
67
 
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## Model Details
13
 
14
+ This model is being made to enhance our work within crewai. We started with a high context length (1048K) version of Llama 3. We then fine-tuned on top of that to get a base agent.
15
 
16
+ ## Model Description
17
+
18
+ Built on the following:
19
+ - Models:
20
+ - [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
21
+ - [Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k)
22
+ - Datasets:
23
+ - m-a-p/CodeFeedback-Filtered-Instruction
24
+ - RomanTeucher/awesome_topic_code_snippets
25
+ - dair-ai/emotion
26
+ - mzbac/function-calling-llama-3-format-v1.1
27
+ - gretelai/synthetic_text_to_sql
28
 
29
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
30
 
31
  - **Developed by:** [More Information Needed]
 
 
32
  - **Model type:** [More Information Needed]
 
33
  - **License:** [More Information Needed]
34
+ - **Finetuned from model [Llama-3-8B-Instruct-Gradient-1048k]
35
 
36
+ ## Model Sources [optional]
37
 
38
  <!-- Provide the basic links for the model. -->
39
 
 
63
 
64
  [More Information Needed]
65
 
 
 
 
 
 
66
 
67
  ### Recommendations
68
 
 
70
 
71
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
 
73
+ ## Code Examples
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ Use the following format when using the model for inference:
76
 
77
+ ```
78
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
79
 
80
+ You are the helpful assistant. <|eot_id|><|start_header_id|>user<|end_header_id|>
81
 
82
+ {prompt} <|eot_id|><|start_header_id|>assistant<|end_header_id|>
83
 
84
+ ```
85
 
86
+ Example of multi turn
87
+ ```
88
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
89
 
90
+ You are a helpful AI assistant for travel tips and recommendations<|eot_id|><|start_header_id|>user<|end_header_id|>
91
 
92
+ What is France's capital?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
93
 
94
+ Bonjour! The capital of France is Paris!<|eot_id|><|start_header_id|>user<|end_header_id|>
95
 
96
+ What can I do there?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
97
 
98
+ Paris, the City of Light, offers a romantic getaway with must-see attractions like the Eiffel Tower and Louvre Museum, romantic experiences like river cruises and charming neighborhoods, and delicious food and drink options, with helpful tips for making the most of your trip.<|eot_id|><|start_header_id|>user<|end_header_id|>
99
 
100
+ Give me a detailed list of the attractions I should visit, and time it takes in each one, to plan my trip accordingly.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
101
+ ```
 
102
 
103
+ ## How to Get Started with the Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
+ Use the code below to get started with the model.
106
 
107
+ ```
108
+ import transformers
109
+ import torch
110
+
111
+ model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
112
+
113
+ pipeline = transformers.pipeline(
114
+ "text-generation",
115
+ model=model_id,
116
+ model_kwargs={"torch_dtype": torch.bfloat16},
117
+ device_map="auto",
118
+ )
119
+
120
+ messages = [
121
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
122
+ {"role": "user", "content": "Who are you?"},
123
+ ]
124
+
125
+ prompt = pipeline.tokenizer.apply_chat_template(
126
+ messages,
127
+ tokenize=False,
128
+ add_generation_prompt=True
129
+ )
130
+
131
+ terminators = [
132
+ pipeline.tokenizer.eos_token_id,
133
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
134
+ ]
135
+
136
+ outputs = pipeline(
137
+ prompt,
138
+ max_new_tokens=256,
139
+ eos_token_id=terminators,
140
+ do_sample=True,
141
+ temperature=0.6,
142
+ top_p=0.9,
143
+ )
144
+ print(outputs[0]["generated_text"][len(prompt):])
145
+
146
+ ```