|
<h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> SwinUNETR </h1> |
|
|
|
_Trained by Margerie Huet Dastarac ._ <br> |
|
_Training date: November 2023 ._ |
|
|
|
## 1. Task Description |
|
Segmentation of the body on the CT scan on a dataset of 60 oropharyngeal patients. This model can be used to clean CT scans by setting voxels value outside of the body contour to air, a typical preprocessing step for other networks. |
|
|
|
## 2. Model |
|
### 2.1. Architecture |
|
|
|
<img width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/o59In69BqrxTEoOdSHZLD.png" alt="alternatetext"> |
|
|
|
_Figure 1: SwinUNETR architecture_ |
|
|
|
### 2.2. Input |
|
<ul> |
|
<li> CT</li> |
|
</ul> |
|
|
|
### 2.3. Output |
|
<ul> |
|
<li> BODY</li> |
|
</ul> |
|
|
|
### 2.4 Training details |
|
<ul> |
|
<li> Number of epoch: 300 </li> |
|
<li> Loss function: Dice loss </li> |
|
<li> Optimizer: Adam </li> |
|
<li> Learning Rate: 3e-4 </li> |
|
<li> Dropout: No </li> |
|
<li> Patch size in voxels: (128,128,128) </li> |
|
<li> Data augmentation used: |
|
<ul> |
|
<li> RandSpatialCropd</li> |
|
<li> RandFlipd axis:0</li> |
|
<li> RandFlipd axis:1</li> |
|
<li> RandFlipd axis:2</li> |
|
<li> NormalizeIntensityd</li> |
|
<li> RandScaleIntensityd factors:0.1 prob:1.0</li> |
|
<li> RandShiftIntensityd, offsets:0.1, prob:1.0</li> |
|
</ul> |
|
</li> |
|
</ul> |
|
|
|
## 3. Dataset |
|
<ul> |
|
<li> Location: Head and neck, oropharynx </li> |
|
<li> Training set size: 60 </li> |
|
<li> Resolution in mm: 3x3x3 </li> |
|
</ul> |
|
|
|
## Performance |
|
+ TBD |
|
|