timpal0l commited on
Commit
877fd81
1 Parent(s): 51be7b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -30,7 +30,7 @@ You can use this model directly with a pipeline for masked language modeling:
30
 
31
  ```python
32
  >>> from transformers import pipeline
33
- >>> unmasker = pipeline('fill-mask', model='AI-Sweden-Models/roberta-large-550k')
34
  >>> unmasker("Huvudstaden i Sverige är <mask>.")
35
  [{'score': 0.5841221213340759,
36
  'token': 1945,
@@ -104,8 +104,8 @@ Here is how to use this model to get the features of a given text in PyTorch:
104
 
105
  ```python
106
  from transformers import RobertaTokenizer, RobertaModel
107
- tokenizer = RobertaTokenizer.from_pretrained('AI-Sweden-Models/roberta-large-550k')
108
- model = RobertaModel.from_pretrained('AI-Sweden-Models/roberta-large-550k')
109
  text = "Replace me by any text you'd like."
110
  encoded_input = tokenizer(text, return_tensors='pt')
111
  output = model(**encoded_input)
@@ -120,7 +120,7 @@ The model was trained with the [optimum-habana](https://github.com/huggingface/o
120
 
121
  The weights from https://huggingface.co/FacebookAI/roberta-large are used as initialization, and the tokenizer is trained from scratch.
122
 
123
- This model is a checkpoint (1 160 000 / 1 350 790). The final run is 5 epochs.
124
 
125
  A batch size of 1536 was used.
126
 
 
30
 
31
  ```python
32
  >>> from transformers import pipeline
33
+ >>> unmasker = pipeline('fill-mask', model='AI-Sweden-Models/roberta-large-1160k')
34
  >>> unmasker("Huvudstaden i Sverige är <mask>.")
35
  [{'score': 0.5841221213340759,
36
  'token': 1945,
 
104
 
105
  ```python
106
  from transformers import RobertaTokenizer, RobertaModel
107
+ tokenizer = RobertaTokenizer.from_pretrained('AI-Sweden-Models/roberta-large-1160k')
108
+ model = RobertaModel.from_pretrained('AI-Sweden-Models/roberta-large-1160k')
109
  text = "Replace me by any text you'd like."
110
  encoded_input = tokenizer(text, return_tensors='pt')
111
  output = model(**encoded_input)
 
120
 
121
  The weights from https://huggingface.co/FacebookAI/roberta-large are used as initialization, and the tokenizer is trained from scratch.
122
 
123
+ This model is a checkpoint (1 160 000 / 1 350 790). The final run is 5 epochs. This is epoch: 4.29.
124
 
125
  A batch size of 1536 was used.
126