|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import PyTorchModelHubMixin |
|
import hashlib |
|
import random |
|
|
|
|
|
class SimpleDHT: |
|
def __init__(self, node_id): |
|
self.node_id = node_id |
|
self.storage = {} |
|
|
|
def _hash(self, key): |
|
"""Generate a hash for the key.""" |
|
return hashlib.sha256(key.encode()).hexdigest() |
|
|
|
def put(self, key, value): |
|
"""Store a key-value pair in the DHT.""" |
|
hashed_key = self._hash(key) |
|
self.storage[hashed_key] = value |
|
print(f"Stored {key} at {hashed_key}") |
|
|
|
def get(self, key): |
|
"""Retrieve a value from the DHT by key.""" |
|
hashed_key = self._hash(key) |
|
return self.storage.get(hashed_key, None) |
|
|
|
|
|
class SelfSovereignAI(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self, input_size=10, hidden_size=20, output_size=1, seq_length=8, num_heads=2): |
|
super(SelfSovereignAI, self).__init__() |
|
|
|
|
|
self.layer1 = nn.Linear(input_size, hidden_size) |
|
self.relu = nn.ReLU() |
|
self.layer2 = nn.Linear(hidden_size, output_size) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
|
|
self.embedding = nn.Linear(input_size, hidden_size) |
|
self.transformer = nn.TransformerEncoder( |
|
nn.TransformerEncoderLayer( |
|
d_model=hidden_size, |
|
nhead=num_heads, |
|
dim_feedforward=hidden_size * 4, |
|
dropout=0.1 |
|
), |
|
num_layers=1 |
|
) |
|
self.seq_length = seq_length |
|
|
|
|
|
self.dht = SimpleDHT(node_id=str(random.randint(1, 1000))) |
|
self._store_metadata() |
|
|
|
def forward(self, x, use_transformer=False): |
|
if use_transformer: |
|
|
|
x = self.embedding(x) |
|
x = self.transformer(x) |
|
x = x.mean(dim=1) |
|
x = self.layer2(x) |
|
x = self.sigmoid(x) |
|
else: |
|
|
|
x = self.layer1(x) |
|
x = self.relu(x) |
|
x = self.layer2(x) |
|
x = self.sigmoid(x) |
|
return x |
|
|
|
def _store_metadata(self): |
|
"""Store model metadata in DHT, including DeepSeek R1 details.""" |
|
metadata = { |
|
"model_name": "Self Sovereign AI 1.0 with DeepSeek R1", |
|
"input_size": 10, |
|
"hidden_size": 20, |
|
"output_size": 1, |
|
"seq_length": self.seq_length, |
|
"num_heads": 2, |
|
"supports_transformer": True |
|
} |
|
self.dht.put("metadata", metadata) |
|
|
|
|
|
transformer_weights = self.transformer.state_dict() |
|
self.dht.put("transformer_weights", transformer_weights) |
|
|
|
def load_from_dht(self): |
|
"""Load transformer weights from DHT if available.""" |
|
weights = self.dht.get("transformer_weights") |
|
if weights: |
|
self.transformer.load_state_dict(weights) |
|
print("Loaded transformer weights from DHT") |
|
|
|
def get_metadata(self): |
|
"""Retrieve model metadata from DHT.""" |
|
return self.dht.get("metadata") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
model = SelfSovereignAI(input_size=10, hidden_size=20, output_size=1, seq_length=8, num_heads=2) |
|
|
|
|
|
input_data_ff = torch.randn(1, 10) |
|
output_ff = model(input_data_ff, use_transformer=False) |
|
print(f"Feedforward output: {output_ff}") |
|
|
|
|
|
input_data_tr = torch.randn(1, 8, 10) |
|
output_tr = model(input_data_tr, use_transformer=True) |
|
print(f"Transformer output: {output_tr}") |
|
|
|
|
|
metadata = model.get_metadata() |
|
print(f"Stored metadata: {metadata}") |
|
|
|
|
|
model.load_from_dht() |
|
|
|
|
|
model.save_pretrained("self_sovereign_ai_1.0_deepseek") |
|
|
|
|
|
model.push_to_hub( |
|
repo_id="your-username/self-sovereign-ai-1.0-deepseek", |
|
commit_message="Added DeepSeek R1 support to Self Sovereign AI 1.0" |
|
) |