lewtun HF staff commited on
Commit
e94e299
1 Parent(s): 8444f4a

Upload LlamaForCausalLM

Browse files
README.md CHANGED
@@ -1,86 +1,46 @@
1
  ---
2
  base_model: deepseek-ai/deepseek-math-7b-base
 
 
3
  tags:
4
  - alignment-handbook
5
  - generated_from_trainer
6
  widget:
7
- - example_title: Math problem
8
- messages:
9
- - role: user
10
- content: >-
11
- For how many values of the constant $k$ will the polynomial
12
- $x^{2}+kx+36$ have two distinct integer roots?
13
- output:
14
- text: >-
15
- ### Solution:
16
-
17
- 1- For the polynomial \\( x^2 + kx + 36 \\) to have two
18
- distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
19
- r_2 \\).
20
-
21
-
22
-
23
- 2- According to Vieta's formulas, the sum of the roots \\( r_1 + r_2 \\)
24
- is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2
25
- \\) is equal to 36.
26
-
27
-
28
-
29
- 3- To find the distinct integer pairs \\((r_1, r_2)\\) whose product is
30
- 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such
31
- that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).
32
-
33
-
34
-
35
- 4- From the equation \\( r_1 + r_2 = -k \\), for each valid pair
36
- \\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).
37
-
38
-
39
-
40
- 5- Finally, since we need the polynomial to have two distinct integer
41
- roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.
42
-
43
- Let's start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1
44
- \\cdot r_2 = 36 \\). We'll then determine the values of \\( k \\) and
45
- ensure the roots are distinct.
46
-
47
- ```python import itertools
48
-
49
- # Find all pairs (r1, r2) such that r1 * r2 = 36 product_36 = 36
50
- factor_pairs = []
51
-
52
- for i in range(1, product_36 + 1):
53
- if product_36 % i == 0:
54
- pair = (i, product_36 // i)
55
- if pair[0] != pair[1]: # Ensure distinct pairs
56
- factor_pairs.append(pair)
57
-
58
- # Calculate k for each pair and ensure distinct integer roots
59
- valid_k_values = set()
60
- for r1, r2 in factor_pairs:
61
- if r1 != r2:
62
- k = -(r1 + r2)
63
- valid_k_values.add(k)
64
-
65
- print((len(valid_k_values), sorted(valid_k_values)))
66
- ```
67
-
68
- ```output
69
- (4, [-37, -20, -15,-13])
70
- ```
71
- The distinct integer values of \\( k \\) that make the
72
- polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
73
- \\(-37, -20, -15, \\text{and} -13\\).
74
-
75
- Therefore, the number of such values of \\( k \\) is:
76
-
77
- [ \\boxed{4} \\]
78
-
79
- pipeline_tag: text-generation
80
  model-index:
81
  - name: NuminaMath-7B-TIR
82
  results: []
83
- license: apache-2.0
84
  ---
85
 
86
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
1
  ---
2
  base_model: deepseek-ai/deepseek-math-7b-base
3
+ license: apache-2.0
4
+ pipeline_tag: text-generation
5
  tags:
6
  - alignment-handbook
7
  - generated_from_trainer
8
  widget:
9
+ - example_title: Math problem
10
+ messages:
11
+ - role: user
12
+ content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
13
+ have two distinct integer roots?
14
+ output:
15
+ text: "### Solution: \n1- For the polynomial \\\\( x^2 + kx + 36 \\\\) to have\
16
+ \ two distinct integer roots, let's denote these roots by \\\\( r_1 \\\\) and\
17
+ \ \\\\( r_2 \\\\).\n\n\n2- According to Vieta's formulas, the sum of the roots\
18
+ \ \\\\( r_1 + r_2 \\\\) is equal to \\\\(-k\\\\), and the product of the roots\
19
+ \ \\\\( r_1 \\\\cdot r_2 \\\\) is equal to 36.\n\n\n3- To find the distinct\
20
+ \ integer pairs \\\\((r_1, r_2)\\\\) whose product is 36, we need to determine\
21
+ \ all pairs of integers \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2\
22
+ \ = 36 \\\\) and \\\\( r_1 \\\\neq r_2 \\\\).\n\n\n4- From the equation \\\\\
23
+ ( r_1 + r_2 = -k \\\\), for each valid pair \\\\((r_1, r_2)\\\\), we can compute\
24
+ \ the corresponding value of \\\\( k \\\\).\n\n\n5- Finally, since we need the\
25
+ \ polynomial to have two distinct integer roots, we need to ensure that \\\\\
26
+ ( r_1 \\\\) and \\\\( r_2 \\\\) are distinct.\nLet's start by finding all pairs\
27
+ \ \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2 = 36 \\\\). We'll then\
28
+ \ determine the values of \\\\( k \\\\) and ensure the roots are distinct.\n\
29
+ ```python import itertools\n# Find all pairs (r1, r2) such that r1 * r2 = 36\
30
+ \ product_36 = 36 factor_pairs = []\nfor i in range(1, product_36 + 1):\n if\
31
+ \ product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] != pair[1]:\
32
+ \ # Ensure distinct pairs\n factor_pairs.append(pair)\n \n # Calculate\
33
+ \ k for each pair and ensure distinct integer roots\n valid_k_values = set()\n\
34
+ \ for r1, r2 in factor_pairs:\n if r1 != r2:\n k = -(r1 + r2)\n\
35
+ \ valid_k_values.add(k)\n \n print((len(valid_k_values), sorted(valid_k_values)))\n\
36
+ \ ```\n \n ```output\n (4, [-37, -20, -15,-13])\n ```\n The distinct integer\
37
+ \ values of \\\\( k \\\\) that make the\npolynomial \\\\( x^2 + kx + 36 \\\\\
38
+ ) have two distinct integer roots are \\\\(-37, -20, -15, \\\\text{and} -13\\\
39
+ \\).\nTherefore, the number of such values of \\\\( k \\\\) is:\n[ \\\\boxed{4}\
40
+ \ \\\\]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  model-index:
42
  - name: NuminaMath-7B-TIR
43
  results: []
 
44
  ---
45
 
46
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "AI-MO/deepseek-math-7b-sft",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
@@ -23,7 +23,7 @@
23
  "rope_theta": 10000.0,
24
  "tie_word_embeddings": false,
25
  "torch_dtype": "bfloat16",
26
- "transformers_version": "4.40.1",
27
  "use_cache": true,
28
  "vocab_size": 102400
29
  }
 
1
  {
2
+ "_name_or_path": "AI-MO/NuminaMath-7B-TIR-decontaminated",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
23
  "rope_theta": 10000.0,
24
  "tie_word_embeddings": false,
25
  "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.42.3",
27
  "use_cache": true,
28
  "vocab_size": 102400
29
  }
generation_config.json CHANGED
@@ -2,5 +2,5 @@
2
  "_from_model_config": true,
3
  "bos_token_id": 100000,
4
  "eos_token_id": 100001,
5
- "transformers_version": "4.40.1"
6
  }
 
2
  "_from_model_config": true,
3
  "bos_token_id": 100000,
4
  "eos_token_id": 100001,
5
+ "transformers_version": "4.42.3"
6
  }
model-00001-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0045d1995c101d251cd3491bd94353abd3a006a8a09869b549c852aa6e116376
3
  size 4987202208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:281356bc1fed34ed0b0f397584f0dcbfb067a9d01948d2547d7df579da85563f
3
  size 4987202208
model-00002-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:03c82865c40e1d7cfb82892b26d0b0f58cef6dbd1404b86835b50b89d193aa7f
3
  size 4980945440
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8124f219a63ead9a2d7d7ac5c7e7f0cda6a8f984c5ab6852cca2ebbc71657f6
3
  size 4980945440
model-00003-of-00003.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a27a6a914a53e91f70b55b84adea793998b0e587a5746f9a02f050bb6510732
3
  size 3852615520
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3210282dad5a2c700dacf79afe4527d07deaab693e716ed4aba1eb8019aedc
3
  size 3852615520