lewtun HF staff commited on
Commit
379f9d4
1 Parent(s): cbb2e2a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-math-7b-base
3
+ tags:
4
+ - alignment-handbook
5
+ - generated_from_trainer
6
+ - aimo
7
+ widget:
8
+ - example_title: Math problem
9
+ messages:
10
+ - role: user
11
+ content: >-
12
+ For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
13
+ have two distinct integer roots?
14
+ output:
15
+ text: >-
16
+ ### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two
17
+ distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
18
+ r_2 \\).\n\n2. According to Vieta's formulas, the sum of the roots \\( r_1
19
+ + r_2 \\) is equal to \\(-k\\), and the product of the roots \\( r_1
20
+ \\cdot r_2 \\) is equal to 36.\n\n3. To find the distinct integer pairs
21
+ \\((r_1, r_2)\\) whose product is 36, we need to determine all pairs of
22
+ integers \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\) and \\(
23
+ r_1 \\neq r_2 \\).\n\n4. From the equation \\( r_1 + r_2 = -k \\), for
24
+ each valid pair \\((r_1, r_2)\\), we can compute the corresponding value
25
+ of \\( k \\).\n\n5. Finally, since we need the polynomial to have two
26
+ distinct integer roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\)
27
+ are distinct.\n\nLet's start by finding all pairs \\((r_1, r_2)\\) such
28
+ that \\( r_1 \\cdot r_2 = 36 \\). We'll then determine the values of \\( k
29
+ \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n#
30
+ Find all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 =
31
+ 36\nfactor_pairs = []\n\nfor i in range(1, product_36 + 1):\n if
32
+ product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] !=
33
+ pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
34
+ Calculate k for each pair and ensure distinct integer
35
+ roots\nvalid_k_values = set()\nfor r1, r2 in factor_pairs:\n if r1 !=
36
+ r2:\n k = -(r1 + r2)\n
37
+ valid_k_values.add(k)\n\nprint((len(valid_k_values),
38
+ sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15,
39
+ -13])\n```\nThe distinct integer values of \\( k \\) that make the
40
+ polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
41
+ \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore, the number of such
42
+ values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n
43
+ pipeline_tag: text-generation
44
+ model-index:
45
+ - name: Numina-Math-7B
46
+ results: []
47
+ license: apache-2.0
48
+ language:
49
+ - en
50
+ ---
51
+
52
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
53
+ should probably proofread and complete it, then remove this comment. -->
54
+
55
+ <img src="https://huggingface.co/AI-MO/Numina-Math-7B/resolve/main/thumbnail.png" alt="Numina Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
56
+
57
+
58
+ # Model Card for NuminaMath 7B GPTQ
59
+
60
+ NuminaMath is a series of language models that are trained to solve math problems using tool-integrated reasoning. NuminaMath 7B won the first progress prize of the [AI Math Olympiad (AIMO)](https://aimoprize.com), with a score of 29/50 on the public and private tests sets.
61
+
62
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/NyhBs_gzg40iwL995DO9L.png)
63
+
64
+ This model is an 8-bit version of [`AI-MO/Numina-Math-7B`](https://huggingface.co/AI-MO/Numina-Math-7B), which we quantized with [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) to run fast inference in the Kaggle submissions. Please consult the original model card for more details.