AALF commited on
Commit
7bf2767
·
verified ·
1 Parent(s): 27f1521

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -3
README.md CHANGED
@@ -11,11 +11,11 @@ tags:
11
  # gemma-2-27b-it-SimPO-37K Model Card
12
 
13
  ## Implementation Details
14
- We first followed the [SimPO](https://github.com/princeton-nlp/SimPO) framework to apply [On-Policy Preference Data Generation](https://github.com/princeton-nlp/SimPO/tree/main/on_policy_data_gen) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset using the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) model. We then selected prompts where the chosen reward was at least 0.01 higher than the rejected reward, resulting in 37,040 training data points.
15
 
16
- Model training was conducted using 8x80G A800 GPUs, leveraging the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library. We used `deepspeed_zero_stage3` with optimizer offloading to the CPU. The `SimPOTrainer` arguments were as follows:
17
 
18
- ```bash
19
  # SimPOTrainer arguments
20
  bf16: true
21
  beta: 10
@@ -45,6 +45,34 @@ warmup_ratio: 0.1
45
  save_only_model: true
46
  ```
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ## Citation
49
 
50
  gemma model:
 
11
  # gemma-2-27b-it-SimPO-37K Model Card
12
 
13
  ## Implementation Details
14
+ We first followed the [SimPO](https://github.com/princeton-nlp/SimPO) framework to apply [On-Policy Preference Data Generation](https://github.com/princeton-nlp/SimPO/tree/main/on_policy_data_gen) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset using the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) model, using [RLHFlow/ArmoRM-Llama3-8B-v0.1](https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1) as reward model to annotate responses. We then selected prompts where the chosen reward was at least 0.01 higher than the rejected reward, resulting in 37,040 training data points.
15
 
16
+ Model training was conducted using 8x80G A800 GPUs, leveraging the [SimPO](https://github.com/princeton-nlp/SimPO) and [alignment-handbook](https://github.com/huggingface/alignment-handbook) library. We used `deepspeed_zero_stage3` with optimizer offloading to the CPU. The training configs were as follows:
17
 
18
+ ```yaml
19
  # SimPOTrainer arguments
20
  bf16: true
21
  beta: 10
 
45
  save_only_model: true
46
  ```
47
 
48
+ ```yaml
49
+ # deepspeed_zero3_offload_optimizer.yaml
50
+ compute_environment: LOCAL_MACHINE
51
+ debug: false
52
+ deepspeed_config:
53
+ deepspeed_multinode_launcher: standard
54
+ offload_optimizer_device: cpu
55
+ offload_param_device: none
56
+ zero3_init_flag: true
57
+ zero3_save_16bit_model: true
58
+ zero_stage: 3
59
+ distributed_type: DEEPSPEED
60
+ downcast_bf16: 'no'
61
+ machine_rank: 0
62
+ main_training_function: main
63
+ main_process_port: 2390
64
+ mixed_precision: bf16
65
+ num_machines: 1
66
+ num_processes: 8
67
+ rdzv_backend: static
68
+ same_network: true
69
+ tpu_env: []
70
+ tpu_use_cluster: false
71
+ tpu_use_sudo: false
72
+ use_cpu: false
73
+ ```
74
+
75
+
76
  ## Citation
77
 
78
  gemma model: