alpaca-7b-nativeEnhanced / training_files /full-training-instructions.txt
8bit-coder's picture
updated training instructions
9f6c26e
raw
history blame
2.13 kB
wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
bash Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
enter, enter, yes, defaults
sudo reboot
conda activate
conda create -n alpaca python=3.10
conda activate alpaca
export PATH="/home/ubuntu/miniconda3/envs/alpaca/bin:$PATH"
sudo apt-get install git-lfs
git lfs install
git clone https://github.com/tatsu-lab/stanford_alpaca
git clone https://huggingface.co/decapoda-research/llama-7b-hf
#remember to edit the tokenizer_config.json from LLaMATokenizer to LlamaTokenizer
git clone https://huggingface.co/8bit-coder/alpaca-7b-nativeEnhanced
pip install sentencepiece
pip install git+https://github.com/huggingface/transformers.git
cd ./stanford_alpaca
pip install -r requirements.txt
cd ..
torchrun --nproc_per_node=8 --master_port=3045 ./stanford_alpaca/train.py --model_name_or_path ./llama-7b-hf --data_path ./alpaca-7b-nativeEnhanced/training_files/alpaca-megaset-fixed.json --fp16 True --output_dir ./output_7b --num_train_epochs 3 --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --gradient_accumulation_steps 16 --evaluation_strategy "no" --save_strategy "steps" --save_steps 200 --learning_rate 2e-5 --weight_decay 0. --warmup_ratio 0.03 --lr_scheduler_type "cosine" --logging_steps 1 --fsdp "full_shard auto_wrap" --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' --tf32 True
# now, make sure with nano that convert-hf-to-pth-16b.py has proper paths to everything
pip install -q datasets loralib sentencepiece
pip install bitsandbytes
python convert-hf-to-pth-16b.py
git clone https://github.com/antimatter15/alpaca.cpp
cd alpaca.cpp
mkdir models
cd ..
mv consolidated.01.pth ./alpaca.cpp/models/consolidated.00.pth
mv params.json ./alpaca.cpp/models/params.json
mv output_13b/tokenizer.model ./alpaca.cpp/models/tokenizer.model
cd alpaca.cpp
make
cd ..
python .deez/convert-pth-to-ggml.py ./alpaca.cpp/models 2 (1 for 7b, 2 for 13b, and the rest you can check yourself ;)
cd alpaca.cpp
./quantize models/ggml-model-f16.bin ggml-alpaca-13b-nativeEnhanced-q4.bin 2
there's your finished model!