|
|
|
|
|
import os |
|
from pathlib import Path |
|
from dotenv import load_dotenv, find_dotenv |
|
from io import StringIO, BytesIO |
|
import textwrap |
|
from typing import Iterator, TextIO, List, Dict, Any, Optional, Sequence, Union |
|
from enum import auto, Enum |
|
import base64 |
|
import glob |
|
import requests |
|
from tqdm import tqdm |
|
from pytubefix import YouTube, Stream |
|
import webvtt |
|
from youtube_transcript_api import YouTubeTranscriptApi |
|
from youtube_transcript_api.formatters import WebVTTFormatter |
|
from predictionguard import PredictionGuard |
|
import cv2 |
|
import json |
|
import PIL |
|
from ollama import chat |
|
from ollama import ChatResponse |
|
from PIL import Image |
|
import dataclasses |
|
import random |
|
from datasets import load_dataset |
|
from os import path as osp |
|
from IPython.display import display |
|
from langchain_core.prompt_values import PromptValue |
|
from langchain_core.messages import ( |
|
MessageLikeRepresentation, |
|
) |
|
|
|
MultimodalModelInput = Union[PromptValue, str, Sequence[MessageLikeRepresentation], Dict[str, Any]] |
|
|
|
def get_from_dict_or_env( |
|
data: Dict[str, Any], key: str, env_key: str, default: Optional[str] = None |
|
) -> str: |
|
"""Get a value from a dictionary or an environment variable.""" |
|
if key in data and data[key]: |
|
return data[key] |
|
else: |
|
return get_from_env(key, env_key, default=default) |
|
|
|
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str: |
|
"""Get a value from a dictionary or an environment variable.""" |
|
if env_key in os.environ and os.environ[env_key]: |
|
return os.environ[env_key] |
|
else: |
|
return default |
|
|
|
def load_env(): |
|
_ = load_dotenv(find_dotenv()) |
|
|
|
def get_openai_api_key(): |
|
load_env() |
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
return openai_api_key |
|
|
|
def get_prediction_guard_api_key(): |
|
load_env() |
|
PREDICTION_GUARD_API_KEY = os.getenv("PREDICTION_GUARD_API_KEY", None) |
|
if PREDICTION_GUARD_API_KEY is None: |
|
PREDICTION_GUARD_API_KEY = input("Please enter your Prediction Guard API Key: ") |
|
return PREDICTION_GUARD_API_KEY |
|
|
|
PREDICTION_GUARD_URL_ENDPOINT = os.getenv("DLAI_PREDICTION_GUARD_URL_ENDPOINT", "https://dl-itdc.predictionguard.com") |
|
|
|
|
|
templates = [ |
|
'a picture of {}', |
|
'an image of {}', |
|
'a nice {}', |
|
'a beautiful {}', |
|
] |
|
|
|
|
|
def prepare_dataset_for_umap_visualization(hf_dataset, class_name, templates=templates, test_size=1000): |
|
|
|
dataset = load_dataset(hf_dataset, trust_remote_code=True) |
|
|
|
train_test_dataset = dataset['train'].train_test_split(test_size=test_size) |
|
|
|
test_dataset = train_test_dataset['test'] |
|
img_txt_pairs = [] |
|
for i in range(len(test_dataset)): |
|
img_txt_pairs.append({ |
|
'caption' : templates[random.randint(0, len(templates)-1)].format(class_name), |
|
'pil_img' : test_dataset[i]['image'] |
|
}) |
|
return img_txt_pairs |
|
|
|
|
|
def download_video(video_url, path='/tmp/'): |
|
print(f'Getting video information for {video_url}') |
|
if not video_url.startswith('http'): |
|
return os.path.join(path, video_url) |
|
|
|
filepath = glob.glob(os.path.join(path, '*.mp4')) |
|
if len(filepath) > 0: |
|
print('Video already downloaded') |
|
return filepath[0] |
|
|
|
def progress_callback(stream: Stream, data_chunk: bytes, bytes_remaining: int) -> None: |
|
pbar.update(len(data_chunk)) |
|
|
|
yt = YouTube(video_url, on_progress_callback=progress_callback) |
|
stream = yt.streams.filter(progressive=True, file_extension='mp4', res='480p').desc().first() |
|
if stream is None: |
|
stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
filename = stream.default_filename.replace(' ', '_') |
|
filepath = os.path.join(path, filename) |
|
|
|
if not os.path.exists(filepath): |
|
print('Downloading video from YouTube...') |
|
pbar = tqdm(desc='Downloading video from YouTube', total=stream.filesize, unit="bytes") |
|
stream.download(path, filename=filename) |
|
pbar.close() |
|
return filepath |
|
|
|
def get_video_id_from_url(video_url): |
|
""" |
|
Examples: |
|
- http://youtu.be/SA2iWivDJiE |
|
- http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu |
|
- http://www.youtube.com/embed/SA2iWivDJiE |
|
- http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US |
|
""" |
|
import urllib.parse |
|
url = urllib.parse.urlparse(video_url) |
|
if url.hostname == 'youtu.be': |
|
return url.path[1:] |
|
if url.hostname in ('www.youtube.com', 'youtube.com'): |
|
if url.path == '/watch': |
|
p = urllib.parse.parse_qs(url.query) |
|
return p['v'][0] |
|
if url.path[:7] == '/embed/': |
|
return url.path.split('/')[2] |
|
if url.path[:3] == '/v/': |
|
return url.path.split('/')[2] |
|
|
|
return video_url |
|
|
|
|
|
def get_transcript_vtt(video_url, path='/tmp'): |
|
video_id = get_video_id_from_url(video_url) |
|
filepath = os.path.join(path,'captions.vtt') |
|
if os.path.exists(filepath): |
|
return filepath |
|
|
|
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en-GB', 'en']) |
|
formatter = WebVTTFormatter() |
|
webvtt_formatted = formatter.format_transcript(transcript) |
|
|
|
with open(filepath, 'w', encoding='utf-8') as webvtt_file: |
|
webvtt_file.write(webvtt_formatted) |
|
webvtt_file.close() |
|
|
|
return filepath |
|
|
|
|
|
|
|
def format_timestamp(seconds: float, always_include_hours: bool = False, fractionalSeperator: str = '.'): |
|
assert seconds >= 0, "non-negative timestamp expected" |
|
milliseconds = round(seconds * 1000.0) |
|
|
|
hours = milliseconds // 3_600_000 |
|
milliseconds -= hours * 3_600_000 |
|
|
|
minutes = milliseconds // 60_000 |
|
milliseconds -= minutes * 60_000 |
|
|
|
seconds = milliseconds // 1_000 |
|
milliseconds -= seconds * 1_000 |
|
|
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" |
|
return f"{hours_marker}{minutes:02d}:{seconds:02d}{fractionalSeperator}{milliseconds:03d}" |
|
|
|
|
|
def str2time(strtime): |
|
|
|
strtime = strtime.strip('"') |
|
|
|
hrs, mins, seconds = [float(c) for c in strtime.split(':')] |
|
|
|
total_seconds = hrs * 60**2 + mins * 60 + seconds |
|
total_miliseconds = total_seconds * 1000 |
|
return total_miliseconds |
|
|
|
def _processText(text: str, maxLineWidth=None): |
|
if (maxLineWidth is None or maxLineWidth < 0): |
|
return text |
|
|
|
lines = textwrap.wrap(text, width=maxLineWidth, tabsize=4) |
|
return '\n'.join(lines) |
|
|
|
|
|
def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA): |
|
|
|
dim = None |
|
(h, w) = image.shape[:2] |
|
|
|
|
|
if width is None and height is None: |
|
return image |
|
|
|
|
|
if width is None: |
|
|
|
r = height / float(h) |
|
dim = (int(w * r), height) |
|
|
|
else: |
|
|
|
r = width / float(w) |
|
dim = (width, int(h * r)) |
|
|
|
|
|
return cv2.resize(image, dim, interpolation=inter) |
|
|
|
|
|
def write_vtt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None): |
|
print("WEBVTT\n", file=file) |
|
for segment in transcript: |
|
text = _processText(segment['text'], maxLineWidth).replace('-->', '->') |
|
|
|
print( |
|
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" |
|
f"{text}\n", |
|
file=file, |
|
flush=True, |
|
) |
|
|
|
|
|
def write_srt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None): |
|
""" |
|
Write a transcript to a file in SRT format. |
|
Example usage: |
|
from pathlib import Path |
|
from whisper.utils import write_srt |
|
import requests |
|
result = transcribe(model, audio_path, temperature=temperature, **args) |
|
# save SRT |
|
audio_basename = Path(audio_path).stem |
|
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt: |
|
write_srt(result["segments"], file=srt) |
|
""" |
|
for i, segment in enumerate(transcript, start=1): |
|
text = _processText(segment['text'].strip(), maxLineWidth).replace('-->', '->') |
|
|
|
|
|
print( |
|
f"{i}\n" |
|
f"{format_timestamp(segment['start'], always_include_hours=True, fractionalSeperator=',')} --> " |
|
f"{format_timestamp(segment['end'], always_include_hours=True, fractionalSeperator=',')}\n" |
|
f"{text}\n", |
|
file=file, |
|
flush=True, |
|
) |
|
|
|
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int=-1) -> str: |
|
segmentStream = StringIO() |
|
|
|
if format == 'vtt': |
|
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
elif format == 'srt': |
|
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth) |
|
else: |
|
raise Exception("Unknown format " + format) |
|
|
|
segmentStream.seek(0) |
|
return segmentStream.read() |
|
|
|
|
|
def encode_image(image_path_or_PIL_img): |
|
if isinstance(image_path_or_PIL_img, PIL.Image.Image): |
|
|
|
buffered = BytesIO() |
|
image_path_or_PIL_img.save(buffered, format="JPEG") |
|
return base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
else: |
|
|
|
with open(image_path_or_PIL_img, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
|
|
def isBase64(sb): |
|
try: |
|
if isinstance(sb, str): |
|
|
|
sb_bytes = bytes(sb, 'ascii') |
|
elif isinstance(sb, bytes): |
|
sb_bytes = sb |
|
else: |
|
raise ValueError("Argument must be string or bytes") |
|
return base64.b64encode(base64.b64decode(sb_bytes)) == sb_bytes |
|
except Exception: |
|
return False |
|
|
|
def encode_image_from_path_or_url(image_path_or_url): |
|
try: |
|
|
|
f = urlopen(image_path_or_url) |
|
|
|
return base64.b64encode(requests.get(image_path_or_url).content).decode('utf-8') |
|
except: |
|
|
|
with open(image_path_or_url, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
|
|
def bt_embedding_from_prediction_guard(prompt, base64_image): |
|
|
|
client = _getPredictionGuardClient() |
|
message = {"text": prompt,} |
|
if base64_image is not None and base64_image != "": |
|
if not isBase64(base64_image): |
|
raise TypeError("image input must be in base64 encoding!") |
|
message['image'] = base64_image |
|
response = client.embeddings.create( |
|
model="bridgetower-large-itm-mlm-itc", |
|
input=[message] |
|
) |
|
return response['data'][0]['embedding'] |
|
|
|
|
|
def load_json_file(file_path): |
|
|
|
with open(file_path, 'r') as file: |
|
data = json.load(file) |
|
return data |
|
|
|
def display_retrieved_results(results): |
|
print(f'There is/are {len(results)} retrieved result(s)') |
|
print() |
|
for i, res in enumerate(results): |
|
print(f'The caption of the {str(i+1)}-th retrieved result is:\n"{results[i].page_content}"') |
|
print() |
|
print(results[i]) |
|
|
|
print("------------------------------------------------------------") |
|
|
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
SINGLE = auto() |
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history""" |
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
map_roles: Dict[str, str] |
|
version: str = "Unknown" |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "\n" |
|
|
|
def _get_prompt_role(self, role): |
|
if self.map_roles is not None and role in self.map_roles.keys(): |
|
return self.map_roles[role] |
|
else: |
|
return role |
|
|
|
def _build_content_for_first_message_in_conversation(self, first_message: List[str]): |
|
content = [] |
|
if len(first_message) != 2: |
|
raise TypeError("First message in Conversation needs to include a prompt and a base64-enconded image!") |
|
|
|
prompt, b64_image = first_message[0], first_message[1] |
|
|
|
|
|
if prompt is None: |
|
raise TypeError("API does not support None prompt yet") |
|
content.append({ |
|
"type": "text", |
|
"text": prompt |
|
}) |
|
if b64_image is None: |
|
raise TypeError("API does not support text only conversation yet") |
|
|
|
|
|
if not isBase64(b64_image): |
|
raise TypeError("Image in Conversation's first message must be stored under base64 encoding!") |
|
|
|
content.append({ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": b64_image, |
|
} |
|
}) |
|
return content |
|
|
|
def _build_content_for_follow_up_messages_in_conversation(self, follow_up_message: List[str]): |
|
|
|
if follow_up_message is not None and len(follow_up_message) > 1: |
|
raise TypeError("Follow-up message in Conversation must not include an image!") |
|
|
|
|
|
if follow_up_message is None or follow_up_message[0] is None: |
|
raise TypeError("Follow-up message in Conversation must include exactly one text message") |
|
|
|
text = follow_up_message[0] |
|
return text |
|
|
|
def get_message(self): |
|
messages = self.messages |
|
api_messages = [] |
|
for i, msg in enumerate(messages): |
|
role, message_content = msg |
|
if i == 0: |
|
|
|
content = self._build_content_for_first_message_in_conversation(message_content) |
|
else: |
|
|
|
content = self._build_content_for_follow_up_messages_in_conversation(message_content) |
|
|
|
api_messages.append({ |
|
"role": role, |
|
"content": content, |
|
}) |
|
return api_messages |
|
|
|
|
|
def serialize_messages(self): |
|
messages = self.messages |
|
ret = "" |
|
if self.sep_style == SeparatorStyle.SINGLE: |
|
if self.system is not None and self.system != "": |
|
ret = self.system + self.sep |
|
for i, (role, message) in enumerate(messages): |
|
role = self._get_prompt_role(role) |
|
if message: |
|
if isinstance(message, List): |
|
|
|
message = message[0] |
|
if i == 0: |
|
|
|
ret += message |
|
else: |
|
ret += role + ": " + message |
|
if i < len(messages) - 1: |
|
|
|
ret += self.sep |
|
else: |
|
ret += role + ":" |
|
else: |
|
raise ValueError(f"Invalid style: {self.sep_style}") |
|
|
|
return ret |
|
|
|
def append_message(self, role, message): |
|
if len(self.messages) == 0: |
|
|
|
assert role == self.roles[0], f"the very first message in conversation must be from role {self.roles[0]}" |
|
assert len(message) == 2, f"the very first message in conversation must include both prompt and an image" |
|
prompt, image = message[0], message[1] |
|
assert prompt is not None, f"prompt must be not None" |
|
assert isBase64(image), f"image must be under base64 encoding" |
|
else: |
|
|
|
assert role in self.roles, f"the follow-up message must be from one of the roles {self.roles}" |
|
assert len(message) == 1, f"the follow-up message must consist of one text message only, no image" |
|
|
|
self.messages.append([role, message]) |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x,y] for x, y in self.messages], |
|
version=self.version, |
|
map_roles=self.map_roles, |
|
) |
|
|
|
def dict(self): |
|
return { |
|
"system": self.system, |
|
"roles": self.roles, |
|
"messages": [[x, y[0] if len(y) == 1 else y] for x, y in self.messages], |
|
"version": self.version, |
|
} |
|
|
|
prediction_guard_llava_conv = Conversation( |
|
system="", |
|
roles=("user", "assistant"), |
|
messages=[], |
|
version="Prediction Guard LLaVA enpoint Conversation v0", |
|
sep_style=SeparatorStyle.SINGLE, |
|
map_roles={ |
|
"user": "USER", |
|
"assistant": "ASSISTANT" |
|
} |
|
) |
|
|
|
|
|
def _getPredictionGuardClient(): |
|
PREDICTION_GUARD_API_KEY = get_prediction_guard_api_key() |
|
client = PredictionGuard( |
|
api_key=PREDICTION_GUARD_API_KEY, |
|
url=PREDICTION_GUARD_URL_ENDPOINT, |
|
) |
|
return client |
|
|
|
|
|
def lvlm_inference(prompt, image, max_tokens: int = 200, temperature: float = 0.95, top_p: float = 0.1, top_k: int = 10): |
|
|
|
conversation = prediction_guard_llava_conv.copy() |
|
conversation.append_message(conversation.roles[0], [prompt, image]) |
|
return lvlm_inference_with_conversation(conversation, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k) |
|
|
|
|
|
|
|
def lvlm_inference_with_conversation(conversation, max_tokens: int = 200, temperature: float = 0.95, top_p: float = 0.1, top_k: int = 10): |
|
|
|
client = _getPredictionGuardClient() |
|
|
|
messages = conversation.get_message() |
|
|
|
response = client.chat.completions.create( |
|
model="llava-1.5-7b-hf", |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
) |
|
return response['choices'][-1]['message']['content'] |
|
|
|
def lvlm_inference_with_ollama(conversation, max_tokens: int = 200, temperature: float = 0.95, top_p: float = 0.1, top_k: int = 10): |
|
|
|
|
|
|
|
|
|
|
|
|
|
stream = chat( |
|
model="llava-1.5-7b-hf", |
|
messages= conversation, |
|
stream=True, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
top_p=top_p, |
|
top_k=top_k |
|
) |
|
|
|
response_data = '' |
|
for chunk in stream: |
|
response_data += chunk['message']['content'] |
|
|
|
return response_data |
|
|
|
|
|
|
|
|
|
|
|
def extract_and_save_frames_and_metadata( |
|
path_to_video, |
|
path_to_transcript, |
|
path_to_save_extracted_frames, |
|
path_to_save_metadatas): |
|
|
|
|
|
metadatas = [] |
|
|
|
|
|
video = cv2.VideoCapture(path_to_video) |
|
|
|
trans = webvtt.read(path_to_transcript) |
|
|
|
|
|
|
|
for idx, transcript in enumerate(trans): |
|
|
|
start_time_ms = str2time(transcript.start) |
|
end_time_ms = str2time(transcript.end) |
|
|
|
|
|
mid_time_ms = (end_time_ms + start_time_ms) / 2 |
|
|
|
text = transcript.text.replace("\n", ' ') |
|
|
|
video.set(cv2.CAP_PROP_POS_MSEC, mid_time_ms) |
|
success, frame = video.read() |
|
if success: |
|
|
|
image = maintain_aspect_ratio_resize(frame, height=350) |
|
|
|
img_fname = f'frame_{idx}.jpg' |
|
img_fpath = osp.join( |
|
path_to_save_extracted_frames, img_fname |
|
) |
|
cv2.imwrite(img_fpath, image) |
|
|
|
|
|
metadata = { |
|
'extracted_frame_path': img_fpath, |
|
'transcript': text, |
|
'video_segment_id': idx, |
|
'video_path': path_to_video, |
|
'mid_time_ms': mid_time_ms, |
|
} |
|
metadatas.append(metadata) |
|
|
|
else: |
|
print(f"ERROR! Cannot extract frame: idx = {idx}") |
|
|
|
|
|
fn = osp.join(path_to_save_metadatas, 'metadatas.json') |
|
with open(fn, 'w') as outfile: |
|
json.dump(metadatas, outfile) |
|
return metadatas |
|
|
|
def extract_meta_data(vid_dir, vid_filepath, vid_transcript_filepath): |
|
|
|
extracted_frames_path = osp.join(vid_dir, 'extracted_frame') |
|
metadatas_path = vid_dir |
|
|
|
|
|
Path(extracted_frames_path).mkdir(parents=True, exist_ok=True) |
|
Path(metadatas_path).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
metadatas = extract_and_save_frames_and_metadata( |
|
vid_filepath, |
|
vid_transcript_filepath, |
|
extracted_frames_path, |
|
metadatas_path, |
|
) |
|
return metadatas |
|
|
|
|
|
|
|
|
|
|
|
def extract_and_save_frames_and_metadata_with_fps( |
|
lvlm_prompt, |
|
path_to_video, |
|
path_to_save_extracted_frames, |
|
path_to_save_metadatas, |
|
num_of_extracted_frames_per_second=1): |
|
|
|
|
|
metadatas = [] |
|
|
|
|
|
video = cv2.VideoCapture(path_to_video) |
|
|
|
|
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
|
|
hop = round(fps / num_of_extracted_frames_per_second) |
|
curr_frame = 0 |
|
idx = -1 |
|
while(True): |
|
|
|
ret, frame = video.read() |
|
if not ret: |
|
break |
|
if curr_frame % hop == 0: |
|
idx = idx + 1 |
|
|
|
|
|
image = maintain_aspect_ratio_resize(frame, height=350) |
|
|
|
img_fname = f'frame_{idx}.jpg' |
|
img_fpath = osp.join( |
|
path_to_save_extracted_frames, |
|
img_fname |
|
) |
|
cv2.imwrite(img_fpath, image) |
|
|
|
|
|
b64_image = encode_image(img_fpath) |
|
caption = lvlm_inference(lvlm_prompt, b64_image) |
|
|
|
|
|
metadata = { |
|
'extracted_frame_path': img_fpath, |
|
'transcript': caption, |
|
'video_segment_id': idx, |
|
'video_path': path_to_video, |
|
} |
|
metadatas.append(metadata) |
|
curr_frame += 1 |
|
|
|
|
|
metadatas_path = osp.join(path_to_save_metadatas,'metadatas.json') |
|
with open(metadatas_path, 'w') as outfile: |
|
json.dump(metadatas, outfile) |
|
return metadatas |