61347023S commited on
Commit
bce1267
1 Parent(s): b59faea

End of training

Browse files
Files changed (3) hide show
  1. README.md +86 -0
  2. config.json +1 -1
  3. pytorch_model.bin +2 -2
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/xtremedistil-l6-h384-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: xtremedistil-l6-h384-uncased-v1.1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # xtremedistil-l6-h384-uncased-v1.1
17
+
18
+ This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.5278
21
+ - F1 Macro: 0.6999
22
+ - F1 Micro: 0.7000
23
+ - Accuracy Balanced: 0.7017
24
+ - Accuracy: 0.7000
25
+ - Precision Macro: 0.7009
26
+ - Recall Macro: 0.7017
27
+ - Precision Micro: 0.7000
28
+ - Recall Micro: 0.7000
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 128
50
+ - seed: 40
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.06
56
+ - num_epochs: 3
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
62
+ | 0.6275 | 0.17 | 200 | 0.6177 | 0.3647 | 0.5463 | 0.5039 | 0.5463 | 0.6163 | 0.5039 | 0.5463 | 0.5463 |
63
+ | 0.5811 | 0.34 | 400 | 0.5808 | 0.5807 | 0.6194 | 0.5976 | 0.6194 | 0.6331 | 0.5976 | 0.6194 | 0.6194 |
64
+ | 0.5769 | 0.51 | 600 | 0.5680 | 0.6564 | 0.6585 | 0.6703 | 0.6585 | 0.6796 | 0.6703 | 0.6585 | 0.6585 |
65
+ | 0.5647 | 0.68 | 800 | 0.5634 | 0.6703 | 0.6728 | 0.6855 | 0.6728 | 0.6976 | 0.6855 | 0.6728 | 0.6728 |
66
+ | 0.5607 | 0.85 | 1000 | 0.5720 | 0.6176 | 0.6448 | 0.6264 | 0.6448 | 0.6569 | 0.6264 | 0.6448 | 0.6448 |
67
+ | 0.5645 | 1.02 | 1200 | 0.5617 | 0.6523 | 0.6601 | 0.6521 | 0.6601 | 0.6581 | 0.6521 | 0.6601 | 0.6601 |
68
+ | 0.5665 | 1.19 | 1400 | 0.5479 | 0.6802 | 0.6840 | 0.6986 | 0.6840 | 0.7172 | 0.6986 | 0.6840 | 0.6840 |
69
+ | 0.5432 | 1.35 | 1600 | 0.5540 | 0.6642 | 0.6665 | 0.6644 | 0.6665 | 0.6641 | 0.6644 | 0.6665 | 0.6665 |
70
+ | 0.5427 | 1.52 | 1800 | 0.5520 | 0.6533 | 0.6617 | 0.6532 | 0.6617 | 0.6601 | 0.6532 | 0.6617 | 0.6617 |
71
+ | 0.5453 | 1.69 | 2000 | 0.5487 | 0.6756 | 0.6781 | 0.6755 | 0.6781 | 0.6757 | 0.6755 | 0.6781 | 0.6781 |
72
+ | 0.5528 | 1.86 | 2200 | 0.5492 | 0.6720 | 0.6771 | 0.6713 | 0.6771 | 0.6747 | 0.6713 | 0.6771 | 0.6771 |
73
+ | 0.531 | 2.03 | 2400 | 0.5476 | 0.6799 | 0.6803 | 0.6882 | 0.6803 | 0.6911 | 0.6882 | 0.6803 | 0.6803 |
74
+ | 0.5199 | 2.2 | 2600 | 0.5454 | 0.6823 | 0.6824 | 0.6863 | 0.6824 | 0.6856 | 0.6863 | 0.6824 | 0.6824 |
75
+ | 0.535 | 2.37 | 2800 | 0.5441 | 0.6797 | 0.6803 | 0.6817 | 0.6803 | 0.6804 | 0.6817 | 0.6803 | 0.6803 |
76
+ | 0.5246 | 2.54 | 3000 | 0.5453 | 0.6746 | 0.6750 | 0.6771 | 0.6750 | 0.6759 | 0.6771 | 0.6750 | 0.6750 |
77
+ | 0.5405 | 2.71 | 3200 | 0.5408 | 0.6824 | 0.6861 | 0.6819 | 0.6861 | 0.6836 | 0.6819 | 0.6861 | 0.6861 |
78
+ | 0.5414 | 2.88 | 3400 | 0.5404 | 0.6826 | 0.6834 | 0.6841 | 0.6834 | 0.6828 | 0.6841 | 0.6834 | 0.6834 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.33.3
84
+ - Pytorch 2.5.1+cu121
85
+ - Datasets 2.14.7
86
+ - Tokenizers 0.13.3
config.json CHANGED
@@ -27,7 +27,7 @@
27
  "pad_token_id": 0,
28
  "position_embedding_type": "absolute",
29
  "problem_type": "single_label_classification",
30
- "torch_dtype": "float32",
31
  "transformers_version": "4.33.3",
32
  "type_vocab_size": 2,
33
  "use_cache": true,
 
27
  "pad_token_id": 0,
28
  "position_embedding_type": "absolute",
29
  "problem_type": "single_label_classification",
30
+ "torch_dtype": "float16",
31
  "transformers_version": "4.33.3",
32
  "type_vocab_size": 2,
33
  "use_cache": true,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb3aaef3d30e2b57474be8170ba528a2d3c3a022b7f57c2a4847230554f1b531
3
- size 90891822
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc9784ccb8ade0cd06803fc824d515cc4d2dd31b1976be8e15a4e134ba7d61f1
3
+ size 45463854