|
--- |
|
license: mit |
|
base_model: vicgalle/xlm-roberta-large-xnli-anli |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-large-xnli-anli-v5.0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-large-xnli-anli-v5.0 |
|
|
|
This model is a fine-tuned version of [vicgalle/xlm-roberta-large-xnli-anli](https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5120 |
|
- F1 Macro: 0.8215 |
|
- F1 Micro: 0.8223 |
|
- Accuracy Balanced: 0.8216 |
|
- Accuracy: 0.8223 |
|
- Precision Macro: 0.8215 |
|
- Recall Macro: 0.8216 |
|
- Precision Micro: 0.8223 |
|
- Recall Micro: 0.8223 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 9e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 64 |
|
- seed: 40 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| |
|
| 0.3779 | 0.85 | 200 | 0.4494 | 0.8020 | 0.8020 | 0.8084 | 0.8020 | 0.8088 | 0.8084 | 0.8020 | 0.8020 | |
|
| 0.2646 | 1.69 | 400 | 0.4425 | 0.8113 | 0.8121 | 0.8126 | 0.8121 | 0.8108 | 0.8126 | 0.8121 | 0.8121 | |
|
| 0.1961 | 2.54 | 600 | 0.5222 | 0.8131 | 0.8147 | 0.8129 | 0.8147 | 0.8135 | 0.8129 | 0.8147 | 0.8147 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |
|
|