library_name: transformers
license: mit
language:
- vi
- en
- zh
base_model:
- OpenGVLab/InternVL2_5-1B
pipeline_tag: image-text-to-text
Vintern-1B-v2 βοΈ (Viet-InternVL2-1B-v2) - The LLaVA π Challenger
We are excited to introduce Vintern-1B-v2 the Vietnamese π»π³ multimodal model that combines the advanced Vietnamese language model Qwen2-0.5B-Instruct[1] with the latest visual model, InternViT-300M-448px[2], CVPR 2024. This model excels in tasks such as OCR-VQA, Doc-VQA, and Chart-VQA,... With only 1 billion parameters, it is 4096 context length finetuned from the Viet-InternVL2-1B model on over 3 million specialized image-question-answer pairs for optical character recognition π, text recognition π€, document extraction π, and general VQA. The model can be integrated into various on-device applications π±, demonstrating its versatility and robust capabilities.
The special thing is that our model can be easily finetuned with a T4 GPU on Google Colab by following the instructions provided at the end of this section.
Model Details
Model Name | Vision Part | Language Part |
---|---|---|
Vintern-1B-v2 | InternViT-300M-448px | Qwen2-0.5B-Instruct |
Vintern-1B-v2 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. Vintern-1B-v2 consists of InternViT-300M-448px, an MLP projector, and Qwen2-0.5B-Instruct.
Training details π
The fine-tuning dataset was meticulously sampled in part from the following datasets:
Viet-OCR-VQA π, Viet-Doc-VQA π, Viet-Doc-VQA-II π, Vista πΌοΈ, Viet-Receipt-VQA π§Ύ, Viet-Sketches-VQA βοΈ, Viet-Geometry-VQA π, Viet-Wiki-Handwriting βοΈ, Viet-ComputerScience-VQA π», Viet-Handwriting-gemini-VQA ποΈ, Viet-Menu-gemini-VQA π½οΈ, Viet-Vintext-gemini-VQA π, Viet-OpenViVQA-gemini-VQA π§ , Viet-Resume-VQA π, Viet-ViTextVQA-gemini-VQA π
Benchmarks π
Examples
Quickstart
Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents. To run inference using the model, follow the steps outlined in our Colab inference notebook
import numpy as np
import torch
import torchvision.transforms as T
# from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
model = AutoModel.from_pretrained(
"5CD-AI/Vintern-1B-v2",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v2", trust_remote_code=True, use_fast=False)
test_image = 'test-image.jpg'
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens= 1024, do_sample=False, num_beams = 3, repetition_penalty=2.5)
question = '<image>\nMΓ΄ tαΊ£ hΓ¬nh αΊ£nh mα»t cΓ‘ch chi tiαΊΏt.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
#question = "CΓ’u hα»i khΓ‘c ......"
#response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
#print(f'User: {question}\nAssistant: {response}')
Finetune on your Data
Citation
@misc{doan2024vintern1befficientmultimodallarge,
title={Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese},
author={Khang T. Doan and Bao G. Huynh and Dung T. Hoang and Thuc D. Pham and Nhat H. Pham and Quan T. M. Nguyen and Bang Q. Vo and Suong N. Hoang},
year={2024},
eprint={2408.12480},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2408.12480},
}