lIlBrother commited on
Commit
b854123
·
1 Parent(s): 97afca9

Init: 모델 최초 커밋

Browse files
README.md CHANGED
@@ -1,3 +1,91 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ko # Example: fr
4
+ license: apache-2.0 # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses
5
+ library_name: transformers # Optional. Example: keras or any library from https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Libraries.ts
6
+ tags:
7
+ - audio
8
+ - automatic-speech-recognition
9
+ datasets:
10
+ - KsponSpeech
11
+ metrics:
12
+ - wer # Example: wer. Use metric id from https://hf.co/metrics
13
  ---
14
+
15
+ # ko-42maru-wav2vec2-conformer-del-1s
16
+
17
+ ## Table of Contents
18
+ - [ko-42maru-wav2vec2-conformer-del-1s](#ko-42maru-wav2vec2-conformer-del-1s)
19
+ - [Table of Contents](#table-of-contents)
20
+ - [Model Details](#model-details)
21
+ - [Evaluation](#evaluation)
22
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
23
+
24
+ ## Model Details
25
+ - **Model Description:**
26
+ 해당 모델은 wav2vec2-conformer base architecture에 scratch pre-training 되었습니다. <br />
27
+ Wav2Vec2ConformerForCTC를 이용하여 KsponSpeech에 대한 Fine-Tuning 모델입니다. <br />
28
+
29
+ - Dataset use [AIHub KsponSpeech](https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123) <br />
30
+ Datasets는 해당 Data를 전처리하여 임의로 만들어 사용하였습니다. <br />
31
+ del-1s의 의미는 1초 이하의 데이터 필터링을 의미합니다. <br />
32
+ 해당 모델은 **음성전사를 자체 커스텀한 42maru** 기준의 데이터로 학습된 모델입니다. (숫자와 영어는 한글 표기법을 따름) <br />
33
+
34
+ - **Developed by:** TADev (@lIlBrother, @ddobokki, @jp42maru)
35
+ - **Language(s):** Korean
36
+ - **License:** apache-2.0
37
+ - **Parent Model:** See the [wav2vec2-conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer) for more information about the pre-trained base model. (해당 모델은 wav2vec2-conformer base architecture에 scratch pre-training 되었습니다.)
38
+
39
+ ## Evaluation
40
+ Just using `load_metric("wer")` and `load_metric("wer")` in huggingface `datasets` library <br />
41
+
42
+ ## How to Get Started With the Model
43
+ ```python
44
+ from transformers import (
45
+ AutoConfig,
46
+ AutoFeatureExtractor,
47
+ AutoModelForCTC,
48
+ AutoTokenizer,
49
+ Wav2Vec2ProcessorWithLM,
50
+ )
51
+ from transformers.pipelines import AutomaticSpeechRecognitionPipeline
52
+ import librosa
53
+
54
+ # 모델과 토크나이저, 예측을 위한 각 모듈들을 불러옵니다.
55
+ config = AutoConfig.from_pretrained(model_config_path)
56
+ model = AutoModelForCTC.from_pretrained(
57
+ model_name_or_path,
58
+ config=config,
59
+ )
60
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
61
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
62
+ beamsearch_decoder = build_ctcdecoder(
63
+ labels=list(tokenizer.encoder.keys()),
64
+ kenlm_model_path=None,
65
+ )
66
+ processor = Wav2Vec2ProcessorWithLM(
67
+ feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=beamsearch_decoder
68
+ )
69
+
70
+ # 실제 예측을 위한 파이프라인에 정의된 모듈들을 삽입.
71
+ asr_pipeline = AutomaticSpeechRecognitionPipeline(
72
+ model=model,
73
+ tokenizer=processor.tokenizer,
74
+ feature_extractor=processor.feature_extractor,
75
+ decoder=processor.decoder,
76
+ device=-1,
77
+ )
78
+
79
+ # 음성파일을 불러오고 beamsearch 파라미터를 특정하여 예측을 수행합니다.
80
+ raw_data, _ = librosa.load(audio_path, sr=16000)
81
+ kwargs = {"decoder_kwargs": {"beam_width": 100}}
82
+ pred = asr_pipeline(inputs=raw_data, **kwargs)["text"]
83
+ # 모델이 자소 분리 유니코드 텍스트로 나오므로, 일반 String으로 변환해줄 필요가 있습니다.
84
+ result = unicodedata.normalize("NFC", pred)
85
+ print(result)
86
+ # 안녕하세요 하나둘셋 테스트입니다.
87
+ ```
88
+ *Beam-100 Result (WER)*:
89
+ | "clean" | "other" |
90
+ | ------- | ------- |
91
+ | 21.52 | 25.72 |
config.json ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "test42/wav2vec2-conformer-del-1s",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ConformerForCTC"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 256,
15
+ "conformer_conv_dropout": 0.1,
16
+ "contrastive_logits_temperature": 0.1,
17
+ "conv_bias": false,
18
+ "conv_depthwise_kernel_size": 31,
19
+ "conv_dim": [
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512,
25
+ 512,
26
+ 512
27
+ ],
28
+ "conv_kernel": [
29
+ 10,
30
+ 3,
31
+ 3,
32
+ 3,
33
+ 3,
34
+ 2,
35
+ 2
36
+ ],
37
+ "conv_stride": [
38
+ 5,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2,
43
+ 2,
44
+ 2
45
+ ],
46
+ "ctc_loss_reduction": "mean",
47
+ "ctc_zero_infinity": true,
48
+ "diversity_loss_weight": 0.1,
49
+ "do_stable_layer_norm": true,
50
+ "eos_token_id": 2,
51
+ "feat_extract_activation": "gelu",
52
+ "feat_extract_norm": "layer",
53
+ "feat_proj_dropout": 0.0,
54
+ "feat_quantizer_dropout": 0.0,
55
+ "final_dropout": 0.1,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.1,
58
+ "hidden_dropout_prob": 0.1,
59
+ "hidden_size": 768,
60
+ "initializer_range": 0.02,
61
+ "intermediate_size": 3072,
62
+ "layer_norm_eps": 1e-05,
63
+ "layerdrop": 0.0,
64
+ "mask_feature_length": 64,
65
+ "mask_feature_min_masks": 0,
66
+ "mask_feature_prob": 0.05,
67
+ "mask_time_length": 10,
68
+ "mask_time_min_masks": 2,
69
+ "mask_time_prob": 0.05,
70
+ "max_source_positions": 5000,
71
+ "model_type": "wav2vec2-conformer",
72
+ "num_adapter_layers": 3,
73
+ "num_attention_heads": 12,
74
+ "num_codevector_groups": 2,
75
+ "num_codevectors_per_group": 320,
76
+ "num_conv_pos_embedding_groups": 16,
77
+ "num_conv_pos_embeddings": 128,
78
+ "num_feat_extract_layers": 7,
79
+ "num_hidden_layers": 12,
80
+ "num_negatives": 100,
81
+ "output_hidden_size": 768,
82
+ "pad_token_id": 0,
83
+ "position_embeddings_type": "relative",
84
+ "proj_codevector_dim": 256,
85
+ "rotary_embedding_base": 10000,
86
+ "tdnn_dilation": [
87
+ 1,
88
+ 2,
89
+ 3,
90
+ 1,
91
+ 1
92
+ ],
93
+ "tdnn_dim": [
94
+ 512,
95
+ 512,
96
+ 512,
97
+ 512,
98
+ 1500
99
+ ],
100
+ "tdnn_kernel": [
101
+ 5,
102
+ 3,
103
+ 3,
104
+ 1,
105
+ 1
106
+ ],
107
+ "torch_dtype": "float32",
108
+ "transformers_version": "4.20.1",
109
+ "use_weighted_layer_sum": false,
110
+ "vocab_size": 72,
111
+ "xvector_output_dim": 512
112
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2763291f92b8e5e90fbbf27f44f290dcc24cdf5f4ff8ca14596a0e6fa6a0c0f
3
+ size 719408199
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "do_lower_case": false,
4
+ "eos_token": "</s>",
5
+ "name_or_path": "test42/wav2vec2-conformer-del-1s",
6
+ "pad_token": "<pad>",
7
+ "processor_class": "Wav2Vec2Processor",
8
+ "replace_word_delimiter_char": " ",
9
+ "special_tokens_map_file": null,
10
+ "tokenizer_class": "Wav2Vec2CTCTokenizer",
11
+ "unk_token": "<unk>",
12
+ "word_delimiter_token": "|"
13
+ }
vocab.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<pad>": 0,
3
+ "<unk>": 1,
4
+ "<s>": 2,
5
+ "</s>": 3,
6
+ "|": 4,
7
+ "\u1171": 5,
8
+ "\u11b4": 6,
9
+ "\u1165": 7,
10
+ "\u11ae": 8,
11
+ "\u110c": 9,
12
+ "\u116a": 10,
13
+ "\u110e": 11,
14
+ "\u11b3": 12,
15
+ "\u11bf": 13,
16
+ "\u116b": 14,
17
+ "\u11c1": 15,
18
+ "\u1163": 16,
19
+ "\u11aa": 17,
20
+ "\u110d": 18,
21
+ "\u1173": 19,
22
+ "\u11ba": 20,
23
+ "\u1169": 21,
24
+ "\u1174": 22,
25
+ "\u1112": 23,
26
+ "\u11c2": 24,
27
+ "\u11ab": 25,
28
+ "\u11b5": 26,
29
+ "\u1167": 27,
30
+ "\u11b6": 28,
31
+ "\u1168": 29,
32
+ "\u1161": 30,
33
+ "\u11ad": 31,
34
+ "\u1170": 32,
35
+ "\u11bd": 33,
36
+ "\u11b8": 34,
37
+ "\u11b1": 35,
38
+ "\u1109": 36,
39
+ "\u11bb": 37,
40
+ "\u11af": 38,
41
+ "\u116d": 39,
42
+ "\u1103": 40,
43
+ "\u11a9": 41,
44
+ "\u1175": 42,
45
+ "\u1101": 43,
46
+ "\u1111": 44,
47
+ "\u1162": 45,
48
+ "\u1110": 46,
49
+ "\u1164": 47,
50
+ "\u1108": 48,
51
+ "\u116e": 49,
52
+ "\u1104": 50,
53
+ "\u1102": 51,
54
+ "\u116f": 52,
55
+ "\u110a": 53,
56
+ "\u1105": 54,
57
+ "\u11b7": 55,
58
+ "\u1106": 56,
59
+ "\u11b9": 57,
60
+ "\u116c": 58,
61
+ "\u1100": 59,
62
+ "\u11ac": 60,
63
+ "\u1107": 61,
64
+ "\u1166": 62,
65
+ "\u11b0": 63,
66
+ "\u11bc": 64,
67
+ "\u11b2": 65,
68
+ "\u11be": 66,
69
+ "\u110b": 67,
70
+ "\u11c0": 68,
71
+ "\u11a8": 69,
72
+ "\u110f": 70,
73
+ "\u1172": 71
74
+ }