1aurent commited on
Commit
f1e9369
1 Parent(s): 06e294d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -1
README.md CHANGED
@@ -1,8 +1,113 @@
1
  ---
2
  tags:
3
  - image-classification
 
4
  - timm
 
 
 
 
 
5
  library_name: timm
6
- license: apache-2.0
 
 
 
7
  ---
 
8
  # Model card for mobilenetv2_100.tiatoolbox-pcam
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
  - image-classification
4
+ - feature-extraction
5
  - timm
6
+ - biology
7
+ - cancer
8
+ - histology
9
+ - TIA
10
+ - tiatoolbox
11
  library_name: timm
12
+ pipeline_tag: image-classification
13
+ license: cc0-1.0
14
+ datasets:
15
+ - 1aurent/PatchCamelyon
16
  ---
17
+
18
  # Model card for mobilenetv2_100.tiatoolbox-pcam
19
+
20
+ A MobileNet-v2 image classification model. \
21
+ Trained by [Tissue Image Analytics (TIA) Centre](https://warwick.ac.uk/fac/cross_fac/tia/) on "pcam" histology patches.
22
+
23
+ ![](https://raw.githubusercontent.com/TissueImageAnalytics/tiatoolbox/develop/docs/tiatoolbox-logo.png)
24
+
25
+ ## Model Details
26
+
27
+ - **Model Type:** Image classification / Feature backbone
28
+ - **Model Stats:**
29
+ - Params (M): 2.26
30
+ - Image size: 96 x 96 x 3
31
+ - **Dataset**: [Patch Camelyon (PCam)](https://github.com/basveeling/pcam/)
32
+ - **Original:** https://github.com/TissueImageAnalytics/tiatoolbox
33
+ - **License**: [Creative Commons Zero v1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/legalcode)
34
+
35
+ ## Model Usage
36
+
37
+ ### Image Classification
38
+
39
+ ```python
40
+ from urllib.request import urlopen
41
+ from PIL import Image
42
+ import torch.nn as nn
43
+ import timm
44
+
45
+ # get example histology image
46
+ img = Image.open(
47
+ urlopen(
48
+ "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
49
+ )
50
+ )
51
+
52
+ # load model from the hub
53
+ model = timm.create_model(
54
+ model_name="hf-hub:1aurent/mobilenetv2_100.tiatoolbox-pcam",
55
+ pretrained=True,
56
+ ).eval()
57
+
58
+ # get model specific transforms (normalization, resize)
59
+ data_config = timm.data.resolve_model_data_config(model)
60
+ transforms = timm.data.create_transform(**data_config, is_training=False)
61
+
62
+ data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
63
+ output = model(data) # output is a (batch_size, num_features) shaped tensor
64
+ ```
65
+
66
+ ### Image Embeddings
67
+
68
+ ```python
69
+ from urllib.request import urlopen
70
+ from PIL import Image
71
+ import torch.nn as nn
72
+ import timm
73
+
74
+ # get example histology image
75
+ img = Image.open(
76
+ urlopen(
77
+ "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
78
+ )
79
+ )
80
+
81
+ # load model from the hub
82
+ model = timm.create_model(
83
+ model_name="hf-hub:1aurent/mobilenetv2_100.tiatoolbox-pcam",
84
+ pretrained=True,
85
+ num_classes=0,
86
+ ).eval()
87
+
88
+ # get model specific transforms (normalization, resize)
89
+ data_config = timm.data.resolve_model_data_config(model)
90
+ transforms = timm.data.create_transform(**data_config, is_training=False)
91
+
92
+ data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
93
+ output = model(data) # output is a (batch_size, num_features) shaped tensor
94
+ ```
95
+
96
+ ## Citation
97
+
98
+ ```bibtex
99
+ @article{Pocock2022,
100
+ author = {Pocock, Johnathan and Graham, Simon and Vu, Quoc Dang and Jahanifar, Mostafa and Deshpande, Srijay and Hadjigeorghiou, Giorgos and Shephard, Adam and Bashir, Raja Muhammad Saad and Bilal, Mohsin and Lu, Wenqi and Epstein, David and Minhas, Fayyaz and Rajpoot, Nasir M and Raza, Shan E Ahmed},
101
+ doi = {10.1038/s43856-022-00186-5},
102
+ issn = {2730-664X},
103
+ journal = {Communications Medicine},
104
+ month = {sep},
105
+ number = {1},
106
+ pages = {120},
107
+ publisher = {Springer US},
108
+ title = {{TIAToolbox as an end-to-end library for advanced tissue image analytics}},
109
+ url = {https://www.nature.com/articles/s43856-022-00186-5},
110
+ volume = {2},
111
+ year = {2022}
112
+ }
113
+ ```