1-800-BAD-CODE's picture
Update README.md
a15bf95
|
raw
history blame
36.2 kB
metadata
license: apache-2.0
library_name: onnx
tags:
  - punctuation
  - sentence boundary detection
  - truecasing
language:
  - af
  - am
  - ar
  - bg
  - bn
  - de
  - el
  - en
  - es
  - et
  - fa
  - fi
  - fr
  - gu
  - hi
  - hr
  - hu
  - id
  - is
  - it
  - ja
  - kk
  - kn
  - ko
  - ky
  - lt
  - lv
  - mk
  - ml
  - mr
  - nl
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - rw
  - so
  - sr
  - sw
  - ta
  - te
  - tr
  - uk
  - zh

Model Overview

This model accepts as input lower-cased, unpunctuated, unsegmented text in 47 languages and performs punctuation restoration, true-casing (capitalization), and sentence boundary detection (segmentation).

All languages are processed with the same algorithm with no need for language tags or language-specific branches in the graph. This includes continuous-script and non-continuous script languages, predicting language-specific punctuation, etc.

Model Details

This model generally follows the graph shown below, with brief descriptions for each step following.

graph.png

  1. Encoding: The model begins by tokenizing the text with a subword tokenizer. The tokenizer used here is a SentencePiece model with a vocabulary size of 64k. Next, the input sequence is encoded with a base-sized Transformer, consisting of 6 layers with a model dimension of 512.

  2. Post-punctuation: The encoded sequence is then fed into a classification network to predict "post" punctuation tokens. Post punctuation are punctuation tokens that may appear after a word, basically most normal punctuation. Post punctation is predicted once per subword - further discussion is below.

  3. Re-encoding All subsequent tasks (true-casing, sentence boundary detection, and "pre" punctuation) are dependent on "post" punctuation. Therefore, we must conditional all further predictions on the post punctuation tokens. For this task, predicted punctation tokens are fed into an embedding layer, where embeddings represent each possible punctuation token. Each time step is mapped to a 4-dimensional embeddings, which is concatenated to the 512-dimensional encoding. The concatenated joint representation is re-encoded to confer global context to each time step to incorporate puncuation predictions into subsequent tasks.

  4. Pre-punctuation After the re-encoding, another classification network predicts "pre" punctuation, or punctation tokens that may appear before a word. In practice, this means the inverted question mark for Spanish and Asturian, ¿. Note that a ¿ can only appear if a ? is predicted, hence the conditioning.

  5. Sentence boundary detection Parallel to the "pre" punctuation, another classification network predicts sentence boundaries from the re-encoded text. In all languages, sentence boundaries can occur only if a potential full stop is predicted, hence the conditioning.

  6. Shift and concat sentence boundaries In many languages, the first character of each sentence should be upper-cased. Thus, we should feed the sentence boundary information to the true-case classification network. Since the true-case classification network is feed-forward and has no context, each time step must embed whether it is the first word of a sentence. Therefore, we shift the binary sentence boundary decisions to the right by one: if token N-1 is a sentence boundary, token N is the first word of a sentence. Concatenating this with the re-encoded text, each time step contains whether it is the first word of a sentence as predicted by the SBD head.

  7. True-case prediction Armed with the knowledge of punctation and sentence boundaries, a classification network predicts true-casing. Since true-casing should be done on a per-character basis, the classification network makes N predictions per token, where N is the length of the subtoken. (In practice, N is the longest possible subword, and the extra predictions are ignored). This scheme captures acronyms, e.g., "NATO", as well as bi-capitalized words, e.g., "MacDonald".

Post-Punctuation Tokens

This model predicts the following set of "post" punctuation tokens:

Token Description Relavant Languages
. Latin full stop Many
, Latin comma Many
? Latin question mark Many
Full-width question mark Chinese, Japanese
Full-width comma Chinese, Japanese
Full-width full stop Chinese, Japanese
Ideographic comma Chinese, Japanese
Middle dot Japanese
Danda Hindi, Bengali, Oriya
؟ Arabic question mark Arabic
; Greek question mark Greek
Ethiopic full stop Amharic
Ethiopic comma Amharic
Ethiopic question mark Amharic

Pre-Punctuation Tokens

This model predicts the following set of "post" punctuation tokens:

Token Description Relavant Languages
¿ Inverted question mark Spanish

Usage

This model is released in two parts:

  1. The ONNX graph
  2. The SentencePiece tokenizer

The following code snippet will instantiate a SimplePCSWrapper, which will download the model files from this repository. It will then run a few example sentences in a few languages, and print the processed output.

Example Code
import logging

from sentencepiece import SentencePieceProcessor
import onnxruntime as ort
import numpy as np
from huggingface_hub import hf_hub_download
from typing import List


class SimplePCSWrapper:
    def __init__(self):
        spe_path = hf_hub_download(
            repo_id="1-800-BAD-CODE/punct_cap_seg_47_language", filename="spe_unigram_64k_lowercase_47lang.model"
        )
        onnx_path = hf_hub_download(
            repo_id="1-800-BAD-CODE/punct_cap_seg_47_language", filename="punct_cap_seg_47lang.onnx"
        )
        self._tokenizer: SentencePieceProcessor = SentencePieceProcessor(spe_path)
        self._ort_session: ort.InferenceSession = ort.InferenceSession(onnx_path)
        # This model has max length 128. Real code should wrap inputs; example code will truncate.
        self._max_len = 128

        # Hard-coding labels, for now
        self._pre_labels = [
            "<NULL>",
            "¿",
        ]

        self._post_labels = [
            "<NULL>",
            ".",
            ",",
            "?",
            "?",
            ",",
            "。",
            "、",
            "・",
            "।",
            "؟",
            "،",
            ";",
            "።",
            "፣",
            "፧",
        ]

    def infer_one_text(self, text: str) -> List[str]:
        input_ids = self._tokenizer.EncodeAsIds(text)
        # Limit sequence to model's positional encoding limit. Leave 2 slots for BOS/EOS tags.
        if len(input_ids) > self._max_len - 2:
            logging.warning(f"Truncating input sequence from {len(input_ids)} to {self._max_len - 2}")
            input_ids = input_ids[: self._max_len - 2]
        # Append BOS and EOS.
        input_ids = [self._tokenizer.bos_id()] + input_ids + [self._tokenizer.eos_id()]
        # Add empty batch dimension. With real batches, sequence padding should be `self._tokenizer.pad_id()`.
        input_ids = [input_ids]

        # ORT input should be np.array
        input_ids = np.array(input_ids)
        # Get predictions.
        pre_preds, post_preds, cap_preds, seg_preds = self._ort_session.run(None, {"input_ids": input_ids})
        # Remove all batch dims. Remove BOS/EOS from time dim
        pre_preds = pre_preds[0, 1:-1]
        post_preds = post_preds[0, 1:-1]
        cap_preds = cap_preds[0, 1:-1]
        seg_preds = seg_preds[0, 1:-1]

        # Apply predictions to input tokens
        input_tokens = self._tokenizer.EncodeAsPieces(text)
        # Segmented sentences
        output_strings: List[str] = []
        # Current sentence, which is built until we hit a sentence boundary prediction
        current_chars: List[str] = []
        for token_idx, token in enumerate(input_tokens):
            # Simple SP decoding
            if token.startswith("▁") and current_chars:
                current_chars.append(" ")
            # Skip non-printable chars
            char_start = 1 if token.startswith("▁") else 0
            for token_char_idx, char in enumerate(token[char_start:], start=char_start):
                # If this is the first char in the subtoken, and we predict "pre-punct", insert it
                if token_char_idx == char_start and pre_preds[token_idx] != 0:
                    current_chars.append(self._pre_labels[pre_preds[token_idx]])
                # If this char should be capitalized, apply upper case
                if cap_preds[token_idx][token_char_idx]:
                    char = char.upper()
                # Append char after pre-punc and upper-casing, before post-punt
                current_chars.append(char)
                # If this is the final char in the subtoken, and we predict "post-punct", insert it
                if token_char_idx == len(token) - 1 and post_preds[token_idx] != 0:
                    current_chars.append(self._post_labels[post_preds[token_idx]])
                # If this token is a sentence boundary, finalize the current sentence and reset
                if token_char_idx == len(token) - 1 and seg_preds[token_idx]:
                    output_strings.append("".join(current_chars))
                    current_chars = []
        return output_strings


# Upon instantiation, will automatically download models from HF Hub
pcs_wrapper: SimplePCSWrapper = SimplePCSWrapper()


# Function for pretty-printing raw input and segmented output
def print_processed_text(input_text: str, output_texts: List[str]):
    print(f"Input: {input_text}")
    print(f"Outputs:")
    for text in output_texts:
        print(f"\t{text}")
    print()


# Process and print each text, one at a time
texts = [
    "hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad",
    "hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in",
    "未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭",
    "በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል",
    "all human beings are born free and equal in dignity and rights they are endowed with reason and conscience and should act towards one another in a spirit of brotherhood",
    "सभी मनुष्य जन्म से मर्यादा और अधिकारों में स्वतंत्र और समान होते हैं वे तर्क और विवेक से संपन्न हैं तथा उन्हें भ्रातृत्व की भावना से परस्पर के प्रति कार्य करना चाहिए",
    "wszyscy ludzie rodzą się wolni i równi pod względem swej godności i swych praw są oni obdarzeni rozumem i sumieniem i powinni postępować wobec innych w duchu braterstwa",
    "tous les êtres humains naissent libres et égaux en dignité et en droits ils sont doués de raison et de conscience et doivent agir les uns envers les autres dans un esprit de fraternité",
]
for text in texts:
    outputs = pcs_wrapper.infer_one_text(text)
    print_processed_text(text, outputs)
Expected output
Input: hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad
Outputs:
  Hola Mundo, ¿cómo estás?
  Estamos bajo el sol y hace mucho calor.
  Santa Coloma abre los huertos urbanos a las escuelas de la ciudad.

Input: hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in
Outputs:
  Hello Friend, how's it going?
  It's snowing outside right now.
  In Connecticut, a large storm is moving in.

Input: 未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭
Outputs:
  未來,疫苗將有望覆蓋3歲以上全年齡段。
  美國與北約軍隊已全部撤離。
  還有鐵路公路在內的各項基建的來源都將枯竭。

Input: በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል
Outputs:
  በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር።
  ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል።

Input: all human beings are born free and equal in dignity and rights they are endowed with reason and conscience and should act towards one another in a spirit of brotherhood
Outputs:
  All human beings are born free and equal in dignity and rights.
  They are endowed with reason and conscience and should act towards one another in a spirit of brotherhood.

Input: सभी मनुष्य जन्म से मर्यादा और अधिकारों में स्वतंत्र और समान होते हैं वे तर्क और विवेक से संपन्न हैं तथा उन्हें भ्रातृत्व की भावना से परस्पर के प्रति कार्य करना चाहिए
Outputs:
  सभी मनुष्य जन्म से मर्यादा और अधिकारों में स्वतंत्र और समान होते हैं।
  वे तर्क और विवेक से संपन्न हैं तथा उन्हें भ्रातृत्व की भावना से परस्पर के प्रति कार्य करना चाहिए।

Input: wszyscy ludzie rodzą się wolni i równi pod względem swej godności i swych praw są oni obdarzeni rozumem i sumieniem i powinni postępować wobec innych w duchu braterstwa
Outputs:
  Wszyscy ludzie rodzą się wolni i równi pod względem swej godności i swych praw.
  Są oni obdarzeni rozumem i sumieniem i powinni postępować wobec innych w duchu braterstwa.

Input: tous les êtres humains naissent libres et égaux en dignité et en droits ils sont doués de raison et de conscience et doivent agir les uns envers les autres dans un esprit de fraternité
Outputs:
  Tous les êtres humains naissent libres et égaux, en dignité et en droits.
  Ils sont doués de raison et de conscience et doivent agir les uns envers les autres.
  Dans un esprit de fraternité.

Training Details

This model was trained in the NeMo framework.

Training Data

This model was trained with News Crawl data from WMT.

1M lines of text for each language was used, except for a few low-resource languages which may have used less.

Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author.

Limitations

This model was trained on news data, and may not perform well on conversational or informal data.

This model predicts punctuation only once per subword. This implies that some acronyms, e.g., 'U.S.', cannot properly be punctuation. This concession was accepted on two grounds:

  1. Such acronyms are rare, especially in the context of multi-lingual models
  2. Punctuated acronyms are typically pronounced as individual characters, e.g., 'U.S.' vs. 'NATO'. Since the expected use-case of this model is the output of an ASR system, it is presumed that such pronunciations would be transcribed as separate tokens, e.g, 'u s' vs. 'us' (though this depends on the model's pre-processing).

Further, this model is unlikely to be of production quality. It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data. This is also a base-sized model with many languages and many tasks, so capacity may be limited.

This model's maximum sequence length is 128, which is relatively short for an NLP problem.

After analyzing the limitations of this version, a future version of this model will attempt to improve the following points:

  1. Longer maximum length
  2. More training data
  3. More training steps

Evaluation

In these metrics, keep in mind that

  1. The data is noisy

  2. Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect. When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages.

  3. Punctuation can be subjective. E.g.,

    Hola mundo, ¿cómo estás?

    or

    Hola mundo. ¿Cómo estás?

    When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics.

Test Data and Example Generation

Each test example was generated using the following procedure:

  1. Concatenate 5 random sentences
  2. Lower-case the concatenated sentence
  3. Remove all punctuation

The data is a held-out portion of News Crawl, which has been deduplicated. 2,000 lines of data per language was used, generating 2,000 unique examples of 5 sentences each. The last 4 sentences of each example were randomly sampled from the 2,000 and may be duplicated.

Examples longer than the model's maximum length were truncated. The number of affected sentences can be estimated from the "full stop" support: with 2,000 sentences and 5 sentences per example, we expect 10,000 full stop targets total.

Selected Language Evaluation Reports

This model will likely be updated soon, so only a few languages are reported below.

English
punct_post test report:
  label                                                precision    recall       f1           support
  <NULL> (label_id: 0)                                    98.71      98.66      98.68     156605
  . (label_id: 1)                                         87.72      88.85      88.28       8752
  , (label_id: 2)                                         68.06      67.81      67.93       5216
  ? (label_id: 3)                                         79.38      77.20      78.27        693
  ? (label_id: 4)                                          0.00       0.00       0.00          0
  , (label_id: 5)                                          0.00       0.00       0.00          0
  。 (label_id: 6)                                          0.00       0.00       0.00          0
  、 (label_id: 7)                                          0.00       0.00       0.00          0
  ・ (label_id: 8)                                          0.00       0.00       0.00          0
  । (label_id: 9)                                          0.00       0.00       0.00          0
  ؟ (label_id: 10)                                         0.00       0.00       0.00          0
  ، (label_id: 11)                                         0.00       0.00       0.00          0
  ; (label_id: 12)                                         0.00       0.00       0.00          0
  ። (label_id: 13)                                         0.00       0.00       0.00          0
  ፣ (label_id: 14)                                         0.00       0.00       0.00          0
  ፧ (label_id: 15)                                         0.00       0.00       0.00          0
  -------------------
  micro avg                                               97.13      97.13      97.13     171266
  macro avg                                               83.46      83.13      83.29     171266
  weighted avg                                            97.13      97.13      97.13     171266

cap test report:
  label                                                precision    recall       f1           support
  LOWER (label_id: 0)                                     99.63      99.49      99.56     526612
  UPPER (label_id: 1)                                     89.19      91.84      90.50      24161
  -------------------
  micro avg                                               99.15      99.15      99.15     550773
  macro avg                                               94.41      95.66      95.03     550773
  weighted avg                                            99.17      99.15      99.16     550773

seg test report:
  label                                                precision    recall       f1           support
  NOSTOP (label_id: 0)                                    99.37      99.42      99.39     162044
  FULLSTOP (label_id: 1)                                  89.75      88.84      89.29       9222
  -------------------
  micro avg                                               98.85      98.85      98.85     171266
  macro avg                                               94.56      94.13      94.34     171266
  weighted avg                                            98.85      98.85      98.85     171266
Spanish
 punct_pre test report:
  label                                                precision    recall       f1           support
  <NULL> (label_id: 0)                                    99.94      99.92      99.93     185535
  ¿ (label_id: 1)                                         55.01      64.86      59.53        296
  -------------------
  micro avg                                               99.86      99.86      99.86     185831
  macro avg                                               77.48      82.39      79.73     185831
  weighted avg                                            99.87      99.86      99.87     185831

punct_post test report:
  label                                                precision    recall       f1           support
  <NULL> (label_id: 0)                                    98.74      98.86      98.80     170282
  . (label_id: 1)                                         90.07      89.58      89.82       9959
  , (label_id: 2)                                         68.33      67.00      67.66       5300
  ? (label_id: 3)                                         70.25      58.62      63.91        290
  ? (label_id: 4)                                          0.00       0.00       0.00          0
  , (label_id: 5)                                          0.00       0.00       0.00          0
  。 (label_id: 6)                                          0.00       0.00       0.00          0
  、 (label_id: 7)                                          0.00       0.00       0.00          0
  ・ (label_id: 8)                                          0.00       0.00       0.00          0
  । (label_id: 9)                                          0.00       0.00       0.00          0
  ؟ (label_id: 10)                                         0.00       0.00       0.00          0
  ، (label_id: 11)                                         0.00       0.00       0.00          0
  ; (label_id: 12)                                         0.00       0.00       0.00          0
  ። (label_id: 13)                                         0.00       0.00       0.00          0
  ፣ (label_id: 14)                                         0.00       0.00       0.00          0
  ፧ (label_id: 15)                                         0.00       0.00       0.00          0
  -------------------
  micro avg                                               97.39      97.39      97.39     185831
  macro avg                                               81.84      78.51      80.05     185831
  weighted avg                                            97.36      97.39      97.37     185831

cap test report:
  label                                                precision    recall       f1           support
  LOWER (label_id: 0)                                     99.62      99.60      99.61     555041
  UPPER (label_id: 1)                                     90.60      91.06      90.83      23538
  -------------------
  micro avg                                               99.25      99.25      99.25     578579
  macro avg                                               95.11      95.33      95.22     578579
  weighted avg                                            99.25      99.25      99.25     578579

[NeMo I 2023-02-22 17:24:04 punct_cap_seg_model:427] seg test report:
  label                                                precision    recall       f1           support
  NOSTOP (label_id: 0)                                    99.44      99.54      99.49     175908
  FULLSTOP (label_id: 1)                                  91.68      89.98      90.82       9923
  -------------------
  micro avg                                               99.03      99.03      99.03     185831
  macro avg                                               95.56      94.76      95.16     185831
  weighted avg                                            99.02      99.03      99.02     185831
Chinese
punct_post test report:
    label                                                precision    recall       f1           support
    <NULL> (label_id: 0)                                    98.82      97.34      98.07     147920
    . (label_id: 1)                                          0.00       0.00       0.00          0
    , (label_id: 2)                                          0.00       0.00       0.00          0
    ? (label_id: 3)                                          0.00       0.00       0.00          0
    ? (label_id: 4)                                         85.77      80.71      83.16        560
    , (label_id: 5)                                         59.88      78.02      67.75       6901
    。 (label_id: 6)                                         92.50      93.92      93.20      10988
    、 (label_id: 7)                                          0.00       0.00       0.00          0
    ・ (label_id: 8)                                          0.00       0.00       0.00          0
    । (label_id: 9)                                          0.00       0.00       0.00          0
    ؟ (label_id: 10)                                         0.00       0.00       0.00          0
    ، (label_id: 11)                                         0.00       0.00       0.00          0
    ; (label_id: 12)                                         0.00       0.00       0.00          0
    ። (label_id: 13)                                         0.00       0.00       0.00          0
    ፣ (label_id: 14)                                         0.00       0.00       0.00          0
    ፧ (label_id: 15)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               96.25      96.25      96.25     166369
    macro avg                                               84.24      87.50      85.55     166369
    weighted avg                                            96.75      96.25      96.45     166369

cap test report:
    label                                                precision    recall       f1           support
    LOWER (label_id: 0)                                     97.07      92.39      94.67        394
    UPPER (label_id: 1)                                     70.59      86.75      77.84         83
    -------------------
    micro avg                                               91.40      91.40      91.40        477
    macro avg                                               83.83      89.57      86.25        477
    weighted avg                                            92.46      91.40      91.74        477

seg test report:
    label                                                precision    recall       f1           support
    NOSTOP (label_id: 0)                                    99.58      99.53      99.56     156369
    FULLSTOP (label_id: 1)                                  92.77      93.50      93.13      10000
    -------------------
    micro avg                                               99.17      99.17      99.17     166369
    macro avg                                               96.18      96.52      96.35     166369
    weighted avg                                            99.17      99.17      99.17     166369
Hindi
punct_post test report:
    label                                                precision    recall       f1           support
    <NULL> (label_id: 0)                                    99.58      99.59      99.59     176743
    . (label_id: 1)                                          0.00       0.00       0.00          0
    , (label_id: 2)                                         68.32      65.23      66.74       1815
    ? (label_id: 3)                                         60.27      44.90      51.46         98
    ? (label_id: 4)                                          0.00       0.00       0.00          0
    , (label_id: 5)                                          0.00       0.00       0.00          0
    。 (label_id: 6)                                          0.00       0.00       0.00          0
    、 (label_id: 7)                                          0.00       0.00       0.00          0
    ・ (label_id: 8)                                          0.00       0.00       0.00          0
    । (label_id: 9)                                         96.45      97.43      96.94      10136
    ؟ (label_id: 10)                                         0.00       0.00       0.00          0
    ، (label_id: 11)                                         0.00       0.00       0.00          0
    ; (label_id: 12)                                         0.00       0.00       0.00          0
    ። (label_id: 13)                                         0.00       0.00       0.00          0
    ፣ (label_id: 14)                                         0.00       0.00       0.00          0
    ፧ (label_id: 15)                                         0.00       0.00       0.00          0
    -------------------
    micro avg                                               99.11      99.11      99.11     188792
    macro avg                                               81.16      76.79      78.68     188792
    weighted avg                                            99.10      99.11      99.10     188792

cap test report:
    label                                                precision    recall       f1           support
    LOWER (label_id: 0)                                     98.25      95.06      96.63        708
    UPPER (label_id: 1)                                     89.46      96.12      92.67        309
    -------------------
    micro avg                                               95.38      95.38      95.38       1017
    macro avg                                               93.85      95.59      94.65       1017
    weighted avg                                            95.58      95.38      95.42       1017

seg test report:
    label                                                precision    recall       f1           support
    NOSTOP (label_id: 0)                                    99.87      99.85      99.86     178892
    FULLSTOP (label_id: 1)                                  97.38      97.58      97.48       9900
    -------------------
    micro avg                                               99.74      99.74      99.74     188792
    macro avg                                               98.62      98.72      98.67     188792
    weighted avg                                            99.74      99.74      99.74     188792
Amharic
punct_post test report:
    label                                                precision    recall       f1           support
    <NULL> (label_id: 0)                                    99.58      99.42      99.50     236298
    . (label_id: 1)                                          0.00       0.00       0.00          0
    , (label_id: 2)                                          0.00       0.00       0.00          0
    ? (label_id: 3)                                          0.00       0.00       0.00          0
    ? (label_id: 4)                                          0.00       0.00       0.00          0
    , (label_id: 5)                                          0.00       0.00       0.00          0
    。 (label_id: 6)                                          0.00       0.00       0.00          0
    、 (label_id: 7)                                          0.00       0.00       0.00          0
    ・ (label_id: 8)                                          0.00       0.00       0.00          0
    । (label_id: 9)                                          0.00       0.00       0.00          0
    ؟ (label_id: 10)                                         0.00       0.00       0.00          0
    ، (label_id: 11)                                         0.00       0.00       0.00          0
    ; (label_id: 12)                                         0.00       0.00       0.00          0
    ። (label_id: 13)                                        89.79      95.24      92.44       9169
    ፣ (label_id: 14)                                        66.85      56.58      61.29       1504
    ፧ (label_id: 15)                                        67.67      83.72      74.84        215
    -------------------
    micro avg                                               98.99      98.99      98.99     247186
    macro avg                                               80.97      83.74      82.02     247186
    weighted avg                                            98.99      98.99      98.98     247186

cap test report:
    label                                                precision    recall       f1           support
    LOWER (label_id: 0)                                     96.65      99.78      98.19       1360
    UPPER (label_id: 1)                                     98.90      85.13      91.50        316
    -------------------
    micro avg                                               97.02      97.02      97.02       1676
    macro avg                                               97.77      92.45      94.84       1676
    weighted avg                                            97.08      97.02      96.93       1676

seg test report:
    label                                                precision    recall       f1           support
    NOSTOP (label_id: 0)                                    99.85      99.74      99.80     239845
    FULLSTOP (label_id: 1)                                  91.72      95.25      93.45       7341
    -------------------
    micro avg                                               99.60      99.60      99.60     247186
    macro avg                                               95.79      97.49      96.62     247186
    weighted avg                                            99.61      99.60      99.61     247186