0xsuid commited on
Commit
701cb03
1 Parent(s): 14acb15

Training in progress, step 285

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "EleutherAI/gpt-neo-1.3B",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTNeoForCausalLM"
6
+ ],
7
+ "attention_dropout": 0,
8
+ "attention_layers": [
9
+ "global",
10
+ "local",
11
+ "global",
12
+ "local",
13
+ "global",
14
+ "local",
15
+ "global",
16
+ "local",
17
+ "global",
18
+ "local",
19
+ "global",
20
+ "local",
21
+ "global",
22
+ "local",
23
+ "global",
24
+ "local",
25
+ "global",
26
+ "local",
27
+ "global",
28
+ "local",
29
+ "global",
30
+ "local",
31
+ "global",
32
+ "local"
33
+ ],
34
+ "attention_types": [
35
+ [
36
+ [
37
+ "global",
38
+ "local"
39
+ ],
40
+ 12
41
+ ]
42
+ ],
43
+ "bos_token_id": 50256,
44
+ "embed_dropout": 0,
45
+ "eos_token_id": 50256,
46
+ "gradient_checkpointing": false,
47
+ "hidden_size": 2048,
48
+ "initializer_range": 0.02,
49
+ "intermediate_size": null,
50
+ "layer_norm_epsilon": 1e-05,
51
+ "max_position_embeddings": 2048,
52
+ "model_type": "gpt_neo",
53
+ "num_heads": 16,
54
+ "num_layers": 24,
55
+ "resid_dropout": 0,
56
+ "summary_activation": null,
57
+ "summary_first_dropout": 0.1,
58
+ "summary_proj_to_labels": true,
59
+ "summary_type": "cls_index",
60
+ "summary_use_proj": true,
61
+ "task_specific_params": {
62
+ "text-generation": {
63
+ "do_sample": true,
64
+ "max_length": 50,
65
+ "temperature": 0.9
66
+ }
67
+ },
68
+ "tokenizer_class": "GPT2Tokenizer",
69
+ "torch_dtype": "float32",
70
+ "transformers_version": "4.26.0",
71
+ "use_cache": false,
72
+ "vocab_size": 50257,
73
+ "window_size": 256
74
+ }
last-checkpoint/config.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "EleutherAI/gpt-neo-1.3B",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTNeoForCausalLM"
6
+ ],
7
+ "attention_dropout": 0,
8
+ "attention_layers": [
9
+ "global",
10
+ "local",
11
+ "global",
12
+ "local",
13
+ "global",
14
+ "local",
15
+ "global",
16
+ "local",
17
+ "global",
18
+ "local",
19
+ "global",
20
+ "local",
21
+ "global",
22
+ "local",
23
+ "global",
24
+ "local",
25
+ "global",
26
+ "local",
27
+ "global",
28
+ "local",
29
+ "global",
30
+ "local",
31
+ "global",
32
+ "local"
33
+ ],
34
+ "attention_types": [
35
+ [
36
+ [
37
+ "global",
38
+ "local"
39
+ ],
40
+ 12
41
+ ]
42
+ ],
43
+ "bos_token_id": 50256,
44
+ "embed_dropout": 0,
45
+ "eos_token_id": 50256,
46
+ "gradient_checkpointing": false,
47
+ "hidden_size": 2048,
48
+ "initializer_range": 0.02,
49
+ "intermediate_size": null,
50
+ "layer_norm_epsilon": 1e-05,
51
+ "max_position_embeddings": 2048,
52
+ "model_type": "gpt_neo",
53
+ "num_heads": 16,
54
+ "num_layers": 24,
55
+ "resid_dropout": 0,
56
+ "summary_activation": null,
57
+ "summary_first_dropout": 0.1,
58
+ "summary_proj_to_labels": true,
59
+ "summary_type": "cls_index",
60
+ "summary_use_proj": true,
61
+ "task_specific_params": {
62
+ "text-generation": {
63
+ "do_sample": true,
64
+ "max_length": 50,
65
+ "temperature": 0.9
66
+ }
67
+ },
68
+ "tokenizer_class": "GPT2Tokenizer",
69
+ "torch_dtype": "float32",
70
+ "transformers_version": "4.26.0",
71
+ "use_cache": false,
72
+ "vocab_size": 50257,
73
+ "window_size": 256
74
+ }
last-checkpoint/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.26.0",
6
+ "use_cache": false
7
+ }
last-checkpoint/global_step285/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fa42080a65eed08b747fe605449ed3eb9a2087fddc890abc4bd5da53906bf40
3
+ size 5363072554
last-checkpoint/global_step285/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79389c44d9db01a221667fd743bd63df37efdfcc47afd04c7d05aee643c2ee37
3
+ size 3946735038
last-checkpoint/global_step285/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd66ce33b12f683058ed2c582348bdcb0a4c684b394f65177dee53ca7b980700
3
+ size 3946736318
last-checkpoint/global_step285/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8411bc2e8b133d6d45440dab4a4f85632c772a6c066177129ae358928f64a328
3
+ size 3946737086
last-checkpoint/global_step285/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc129765c2d02d524c92ff41fdfba31d787fa449387d71031923462aea98be97
3
+ size 3946736574
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step285
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da2622d1fc7fd4f286bc5969b5c41d5b9fc1c68b054d356b8fb4c1234a332a0e
3
+ size 5363024236
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a961c7aa8293531040f379f129f1930093670f11c91d3736bf6d8518af2b1507
3
+ size 14583
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbc4475e8615a434844642d2b6db8c82a3eb4d1532c0358142650af35982f7d4
3
+ size 14583
last-checkpoint/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:881eb4ea22a97cf8b6f92b147ff4c6e2ae57dcc7e36f52b570b5be3eeb7887b6
3
+ size 14583
last-checkpoint/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b494daea51340989a686bc325649dfd2d62f65af56b0d25143e33790c8a957a
3
+ size 14583
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
last-checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 2048,
22
+ "name_or_path": "EleutherAI/gpt-neo-1.3B",
23
+ "pad_token": null,
24
+ "special_tokens_map_file": null,
25
+ "tokenizer_class": "GPT2Tokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.2490442381212452,
5
+ "global_step": 285,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 0.0,
13
+ "loss": 5.4178,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 1.294882868674145e-05,
19
+ "loss": 0.446,
20
+ "step": 5
21
+ },
22
+ {
23
+ "epoch": 0.04,
24
+ "learning_rate": 1.852558565662928e-05,
25
+ "loss": 0.3922,
26
+ "step": 10
27
+ },
28
+ {
29
+ "epoch": 0.07,
30
+ "learning_rate": 2.1787779359648994e-05,
31
+ "loss": 0.3732,
32
+ "step": 15
33
+ },
34
+ {
35
+ "epoch": 0.09,
36
+ "learning_rate": 2.41023426265171e-05,
37
+ "loss": 0.3591,
38
+ "step": 20
39
+ },
40
+ {
41
+ "epoch": 0.11,
42
+ "learning_rate": 2.58976573734829e-05,
43
+ "loss": 0.3384,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.13,
48
+ "learning_rate": 2.7364536329536817e-05,
49
+ "loss": 0.3291,
50
+ "step": 30
51
+ },
52
+ {
53
+ "epoch": 0.15,
54
+ "learning_rate": 2.8604764815275082e-05,
55
+ "loss": 0.326,
56
+ "step": 35
57
+ },
58
+ {
59
+ "epoch": 0.17,
60
+ "learning_rate": 2.9679099596404923e-05,
61
+ "loss": 0.3234,
62
+ "step": 40
63
+ },
64
+ {
65
+ "epoch": 0.2,
66
+ "learning_rate": 3.0626730032556536e-05,
67
+ "loss": 0.3089,
68
+ "step": 45
69
+ },
70
+ {
71
+ "epoch": 0.22,
72
+ "learning_rate": 3.147441434337073e-05,
73
+ "loss": 0.2995,
74
+ "step": 50
75
+ },
76
+ {
77
+ "epoch": 0.24,
78
+ "learning_rate": 3.224123807782732e-05,
79
+ "loss": 0.2933,
80
+ "step": 55
81
+ },
82
+ {
83
+ "epoch": 0.26,
84
+ "learning_rate": 3.294129329942464e-05,
85
+ "loss": 0.2777,
86
+ "step": 60
87
+ },
88
+ {
89
+ "epoch": 0.28,
90
+ "learning_rate": 3.358528167653452e-05,
91
+ "loss": 0.2757,
92
+ "step": 65
93
+ },
94
+ {
95
+ "epoch": 0.31,
96
+ "learning_rate": 3.4181521785162905e-05,
97
+ "loss": 0.2674,
98
+ "step": 70
99
+ },
100
+ {
101
+ "epoch": 0.33,
102
+ "learning_rate": 3.473660804639045e-05,
103
+ "loss": 0.258,
104
+ "step": 75
105
+ },
106
+ {
107
+ "epoch": 0.35,
108
+ "learning_rate": 3.525585656629274e-05,
109
+ "loss": 0.2524,
110
+ "step": 80
111
+ },
112
+ {
113
+ "epoch": 0.37,
114
+ "learning_rate": 3.574361557584177e-05,
115
+ "loss": 0.2498,
116
+ "step": 85
117
+ },
118
+ {
119
+ "epoch": 0.39,
120
+ "learning_rate": 3.620348700244436e-05,
121
+ "loss": 0.2412,
122
+ "step": 90
123
+ },
124
+ {
125
+ "epoch": 0.42,
126
+ "learning_rate": 3.6638488054916214e-05,
127
+ "loss": 0.231,
128
+ "step": 95
129
+ },
130
+ {
131
+ "epoch": 0.44,
132
+ "learning_rate": 3.705117131325856e-05,
133
+ "loss": 0.227,
134
+ "step": 100
135
+ },
136
+ {
137
+ "epoch": 0.46,
138
+ "learning_rate": 3.7443715488182624e-05,
139
+ "loss": 0.219,
140
+ "step": 105
141
+ },
142
+ {
143
+ "epoch": 0.48,
144
+ "learning_rate": 3.781799504771514e-05,
145
+ "loss": 0.2189,
146
+ "step": 110
147
+ },
148
+ {
149
+ "epoch": 0.5,
150
+ "learning_rate": 3.81756343539018e-05,
151
+ "loss": 0.2148,
152
+ "step": 115
153
+ },
154
+ {
155
+ "epoch": 0.52,
156
+ "learning_rate": 3.851805026931246e-05,
157
+ "loss": 0.2054,
158
+ "step": 120
159
+ },
160
+ {
161
+ "epoch": 0.55,
162
+ "learning_rate": 3.8846486060224364e-05,
163
+ "loss": 0.2012,
164
+ "step": 125
165
+ },
166
+ {
167
+ "epoch": 0.57,
168
+ "learning_rate": 3.916203864642234e-05,
169
+ "loss": 0.1942,
170
+ "step": 130
171
+ },
172
+ {
173
+ "epoch": 0.59,
174
+ "learning_rate": 3.946568070546408e-05,
175
+ "loss": 0.1882,
176
+ "step": 135
177
+ },
178
+ {
179
+ "epoch": 0.61,
180
+ "learning_rate": 3.975827875505073e-05,
181
+ "loss": 0.1829,
182
+ "step": 140
183
+ },
184
+ {
185
+ "epoch": 0.63,
186
+ "learning_rate": 4.004060806090172e-05,
187
+ "loss": 0.1845,
188
+ "step": 145
189
+ },
190
+ {
191
+ "epoch": 0.66,
192
+ "learning_rate": 4.031336501627827e-05,
193
+ "loss": 0.1678,
194
+ "step": 150
195
+ },
196
+ {
197
+ "epoch": 0.68,
198
+ "learning_rate": 4.0577177490884e-05,
199
+ "loss": 0.1798,
200
+ "step": 155
201
+ },
202
+ {
203
+ "epoch": 0.7,
204
+ "learning_rate": 4.0832613536180565e-05,
205
+ "loss": 0.1735,
206
+ "step": 160
207
+ },
208
+ {
209
+ "epoch": 0.72,
210
+ "learning_rate": 4.1080188750734856e-05,
211
+ "loss": 0.176,
212
+ "step": 165
213
+ },
214
+ {
215
+ "epoch": 0.74,
216
+ "learning_rate": 4.1320372545729594e-05,
217
+ "loss": 0.1662,
218
+ "step": 170
219
+ },
220
+ {
221
+ "epoch": 0.76,
222
+ "learning_rate": 4.155359350201654e-05,
223
+ "loss": 0.1565,
224
+ "step": 175
225
+ },
226
+ {
227
+ "epoch": 0.79,
228
+ "learning_rate": 4.178024397233218e-05,
229
+ "loss": 0.1574,
230
+ "step": 180
231
+ },
232
+ {
233
+ "epoch": 0.81,
234
+ "learning_rate": 4.200068405281827e-05,
235
+ "loss": 0.1549,
236
+ "step": 185
237
+ },
238
+ {
239
+ "epoch": 0.83,
240
+ "learning_rate": 4.221524502480404e-05,
241
+ "loss": 0.1573,
242
+ "step": 190
243
+ },
244
+ {
245
+ "epoch": 0.85,
246
+ "learning_rate": 4.242423234944206e-05,
247
+ "loss": 0.1477,
248
+ "step": 195
249
+ },
250
+ {
251
+ "epoch": 0.87,
252
+ "learning_rate": 4.262792828314637e-05,
253
+ "loss": 0.1567,
254
+ "step": 200
255
+ },
256
+ {
257
+ "epoch": 0.9,
258
+ "learning_rate": 4.282659417003183e-05,
259
+ "loss": 0.1423,
260
+ "step": 205
261
+ },
262
+ {
263
+ "epoch": 0.92,
264
+ "learning_rate": 4.302047245807045e-05,
265
+ "loss": 0.1405,
266
+ "step": 210
267
+ },
268
+ {
269
+ "epoch": 0.94,
270
+ "learning_rate": 4.320978847798302e-05,
271
+ "loss": 0.1406,
272
+ "step": 215
273
+ },
274
+ {
275
+ "epoch": 0.96,
276
+ "learning_rate": 4.3394752017602966e-05,
277
+ "loss": 0.1381,
278
+ "step": 220
279
+ },
280
+ {
281
+ "epoch": 0.98,
282
+ "learning_rate": 4.357555871929799e-05,
283
+ "loss": 0.131,
284
+ "step": 225
285
+ },
286
+ {
287
+ "epoch": 1.01,
288
+ "learning_rate": 4.375239132378962e-05,
289
+ "loss": 0.1507,
290
+ "step": 230
291
+ },
292
+ {
293
+ "epoch": 1.03,
294
+ "learning_rate": 4.392542078019592e-05,
295
+ "loss": 0.1199,
296
+ "step": 235
297
+ },
298
+ {
299
+ "epoch": 1.05,
300
+ "learning_rate": 4.4094807239200284e-05,
301
+ "loss": 0.1257,
302
+ "step": 240
303
+ },
304
+ {
305
+ "epoch": 1.07,
306
+ "learning_rate": 4.426070094380871e-05,
307
+ "loss": 0.1185,
308
+ "step": 245
309
+ },
310
+ {
311
+ "epoch": 1.1,
312
+ "learning_rate": 4.442324303011218e-05,
313
+ "loss": 0.115,
314
+ "step": 250
315
+ },
316
+ {
317
+ "epoch": 1.12,
318
+ "learning_rate": 4.458256624874931e-05,
319
+ "loss": 0.1188,
320
+ "step": 255
321
+ },
322
+ {
323
+ "epoch": 1.14,
324
+ "learning_rate": 4.4738795616310163e-05,
325
+ "loss": 0.108,
326
+ "step": 260
327
+ },
328
+ {
329
+ "epoch": 1.16,
330
+ "learning_rate": 4.48920490046898e-05,
331
+ "loss": 0.1125,
332
+ "step": 265
333
+ },
334
+ {
335
+ "epoch": 1.18,
336
+ "learning_rate": 4.50424376753519e-05,
337
+ "loss": 0.1094,
338
+ "step": 270
339
+ },
340
+ {
341
+ "epoch": 1.21,
342
+ "learning_rate": 4.5190066764568774e-05,
343
+ "loss": 0.1033,
344
+ "step": 275
345
+ },
346
+ {
347
+ "epoch": 1.23,
348
+ "learning_rate": 4.533503572493855e-05,
349
+ "loss": 0.1037,
350
+ "step": 280
351
+ },
352
+ {
353
+ "epoch": 1.25,
354
+ "learning_rate": 4.547743872782376e-05,
355
+ "loss": 0.1038,
356
+ "step": 285
357
+ }
358
+ ],
359
+ "max_steps": 1140,
360
+ "num_train_epochs": 5,
361
+ "total_flos": 2.1734911911007355e+18,
362
+ "trial_name": null,
363
+ "trial_params": null
364
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e1a0fcbf25720ed542bd10424c03d13a02ac8f5eff85f51e6389fe1f87d97f
3
+ size 4603
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ from deepspeed.utils import logger
21
+ from deepspeed.checkpoint.constants import (DS_VERSION,
22
+ OPTIMIZER_STATE_DICT,
23
+ SINGLE_PARTITION_OF_FP32_GROUPS,
24
+ FP32_FLAT_GROUPS,
25
+ ZERO_STAGE,
26
+ PARTITION_COUNT,
27
+ PARAM_SHAPES,
28
+ BUFFER_NAMES)
29
+
30
+ debug = 0
31
+
32
+ # load to cpu
33
+ device = torch.device('cpu')
34
+
35
+
36
+ def atoi(text):
37
+ return int(text) if text.isdigit() else text
38
+
39
+
40
+ def natural_keys(text):
41
+ '''
42
+ alist.sort(key=natural_keys) sorts in human order
43
+ http://nedbatchelder.com/blog/200712/human_sorting.html
44
+ (See Toothy's implementation in the comments)
45
+ '''
46
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
47
+
48
+
49
+ def get_model_state_file(checkpoint_dir, zero_stage):
50
+ if not os.path.isdir(checkpoint_dir):
51
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
52
+
53
+ # there should be only one file
54
+ if zero_stage == 2:
55
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
56
+ elif zero_stage == 3:
57
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
58
+
59
+ if not os.path.exists(file):
60
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
61
+
62
+ return file
63
+
64
+
65
+ def get_optim_files(checkpoint_dir):
66
+ # XXX: need to test that this simple glob rule works for multi-node setup too
67
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
68
+ "*_optim_states.pt")),
69
+ key=natural_keys)
70
+
71
+ if len(optim_files) == 0:
72
+ raise FileNotFoundError(
73
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
74
+
75
+ return optim_files
76
+
77
+
78
+ def parse_model_state(file):
79
+ state_dict = torch.load(file, map_location=device)
80
+
81
+ if BUFFER_NAMES not in state_dict:
82
+ raise ValueError(f"{file} is not a model state checkpoint")
83
+ buffer_names = state_dict[BUFFER_NAMES]
84
+ if debug:
85
+ print("Found buffers:", buffer_names)
86
+
87
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
88
+ buffers = {
89
+ k: v.float()
90
+ for k,
91
+ v in state_dict["module"].items() if k in buffer_names
92
+ }
93
+ param_shapes = state_dict[PARAM_SHAPES]
94
+
95
+ ds_version = state_dict.get(DS_VERSION, None)
96
+
97
+ return buffers, param_shapes, ds_version
98
+
99
+
100
+ def parse_optim_states(files, ds_checkpoint_dir):
101
+
102
+ total_files = len(files)
103
+ state_dicts = []
104
+ for f in files:
105
+ state_dicts.append(torch.load(f, map_location=device))
106
+
107
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
108
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
109
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
110
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
111
+
112
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
113
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
114
+ # use the max of the partition_count to get the dp world_size.
115
+
116
+ if type(world_size) is list:
117
+ world_size = max(world_size)
118
+
119
+ if world_size != total_files:
120
+ raise ValueError(
121
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
122
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
123
+ )
124
+
125
+ # the groups are named differently in each stage
126
+ if zero_stage == 2:
127
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
128
+ elif zero_stage == 3:
129
+ fp32_groups_key = FP32_FLAT_GROUPS
130
+ else:
131
+ raise ValueError(f"unknown zero stage {zero_stage}")
132
+
133
+ if zero_stage == 2:
134
+ fp32_flat_groups = [
135
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
136
+ for i in range(len(state_dicts))
137
+ ]
138
+ elif zero_stage == 3:
139
+ # if there is more than one param group, there will be multiple flattened tensors - one
140
+ # flattened tensor per group - for simplicity merge them into a single tensor
141
+ #
142
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
143
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
144
+
145
+ fp32_flat_groups = [
146
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
147
+ 0) for i in range(len(state_dicts))
148
+ ]
149
+
150
+ return zero_stage, world_size, fp32_flat_groups
151
+
152
+
153
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
154
+ """
155
+ Returns fp32 state_dict reconstructed from ds checkpoint
156
+
157
+ Args:
158
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
159
+
160
+ """
161
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
162
+
163
+ optim_files = get_optim_files(ds_checkpoint_dir)
164
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
165
+ print(
166
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
167
+
168
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
169
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
170
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
171
+
172
+ if zero_stage == 2:
173
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
174
+ param_shapes,
175
+ fp32_flat_groups,
176
+ buffers)
177
+ elif zero_stage == 3:
178
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
179
+ param_shapes,
180
+ fp32_flat_groups,
181
+ buffers)
182
+
183
+
184
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
185
+ param_shapes,
186
+ fp32_flat_groups,
187
+ buffers):
188
+
189
+ # Reconstruction protocol:
190
+ #
191
+ # XXX: document this
192
+
193
+ if debug:
194
+ for i in range(world_size):
195
+ for j in range(len(fp32_flat_groups[0])):
196
+ print(
197
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
198
+
199
+ # XXX: memory usage doubles here (zero2)
200
+ num_param_groups = len(fp32_flat_groups[0])
201
+ merged_single_partition_of_fp32_groups = []
202
+ for i in range(num_param_groups):
203
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
204
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
205
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
206
+ avail_numel = sum([
207
+ full_single_fp32_vector.numel()
208
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
209
+ ])
210
+
211
+ if debug:
212
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
213
+ wanted_numel = sum(
214
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
215
+ # not asserting if there is a mismatch due to possible padding
216
+ print(f"Have {avail_numel} numels to process.")
217
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
218
+
219
+ state_dict = OrderedDict()
220
+
221
+ # buffers
222
+ state_dict.update(buffers)
223
+ if debug:
224
+ print(f"added {len(buffers)} buffers")
225
+
226
+ # params
227
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
228
+ # out-of-core computing solution
229
+ total_numel = 0
230
+ total_params = 0
231
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
232
+ offset = 0
233
+ avail_numel = full_single_fp32_vector.numel()
234
+ for name, shape in shapes.items():
235
+
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+ total_params += 1
239
+
240
+ if debug:
241
+ print(
242
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
243
+ )
244
+ state_dict[name] = full_single_fp32_vector.narrow(
245
+ 0,
246
+ offset,
247
+ unpartitioned_numel).view(shape)
248
+ offset += unpartitioned_numel
249
+
250
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
251
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
252
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
253
+ # live optimizer object, so we are checking that the numbers are within the right range
254
+ align_to = 2 * world_size
255
+
256
+ def zero2_align(x):
257
+ return align_to * math.ceil(x / align_to)
258
+
259
+ if debug:
260
+ print(f"original offset={offset}, avail_numel={avail_numel}")
261
+
262
+ offset = zero2_align(offset)
263
+ avail_numel = zero2_align(avail_numel)
264
+
265
+ if debug:
266
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
267
+
268
+ # Sanity check
269
+ if offset != avail_numel:
270
+ raise ValueError(
271
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
272
+
273
+ print(
274
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
275
+ )
276
+
277
+ return state_dict
278
+
279
+
280
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
281
+ remainder = unpartitioned_numel % world_size
282
+ padding_numel = (world_size - remainder) if remainder else 0
283
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
284
+ return partitioned_numel, padding_numel
285
+
286
+
287
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
288
+ param_shapes,
289
+ fp32_flat_groups,
290
+ buffers):
291
+
292
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
293
+ # param, re-consolidating each param, while dealing with padding if any
294
+
295
+ avail_numel = fp32_flat_groups[0].numel() * world_size
296
+ # merge list of dicts, preserving order
297
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
298
+
299
+ if debug:
300
+ for i in range(world_size):
301
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
302
+
303
+ wanted_params = len(param_shapes)
304
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
305
+ # not asserting if there is a mismatch due to possible padding
306
+ print(f"Have {avail_numel} numels to process.")
307
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
308
+
309
+ state_dict = OrderedDict()
310
+
311
+ # buffers
312
+ state_dict.update(buffers)
313
+ if debug:
314
+ print(f"added {len(buffers)} buffers")
315
+
316
+ # params
317
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
318
+ # out-of-core computing solution
319
+ offset = 0
320
+ total_numel = 0
321
+ total_params = 0
322
+ for name, shape in param_shapes.items():
323
+
324
+ unpartitioned_numel = shape.numel()
325
+ total_numel += unpartitioned_numel
326
+ total_params += 1
327
+
328
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
329
+
330
+ if debug:
331
+ print(
332
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
333
+ )
334
+
335
+ # XXX: memory usage doubles here
336
+ state_dict[name] = torch.cat(
337
+ tuple(fp32_flat_groups[i].narrow(0,
338
+ offset,
339
+ partitioned_numel)
340
+ for i in range(world_size)),
341
+ 0).narrow(0,
342
+ 0,
343
+ unpartitioned_numel).view(shape)
344
+ offset += partitioned_numel
345
+
346
+ offset *= world_size
347
+
348
+ # Sanity check
349
+ if offset != avail_numel:
350
+ raise ValueError(
351
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
352
+
353
+ print(
354
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
355
+ )
356
+
357
+ return state_dict
358
+
359
+
360
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
361
+ """
362
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
363
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
364
+ via a model hub.
365
+
366
+ Args:
367
+ - ``checkpoint_dir``: path to the desired checkpoint folder
368
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
369
+
370
+ Returns:
371
+ - pytorch ``state_dict``
372
+
373
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
374
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
375
+ the checkpoint.
376
+
377
+ A typical usage might be ::
378
+
379
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
380
+ # do the training and checkpoint saving
381
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
382
+ model = model.cpu() # move to cpu
383
+ model.load_state_dict(state_dict)
384
+ # submit to model hub or save the model to share with others
385
+
386
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
387
+ application. i.e. you will need to re-initialize the deepspeed engine, since
388
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
389
+
390
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
391
+
392
+ """
393
+ if tag is None:
394
+ latest_path = os.path.join(checkpoint_dir, 'latest')
395
+ if os.path.isfile(latest_path):
396
+ with open(latest_path, 'r') as fd:
397
+ tag = fd.read().strip()
398
+ else:
399
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
400
+
401
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
402
+
403
+ if not os.path.isdir(ds_checkpoint_dir):
404
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
405
+
406
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
407
+
408
+
409
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
410
+ """
411
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
412
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
413
+
414
+ Args:
415
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
416
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
417
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
418
+ """
419
+
420
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
421
+ print(f"Saving fp32 state dict to {output_file}")
422
+ torch.save(state_dict, output_file)
423
+
424
+
425
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
426
+ """
427
+ 1. Put the provided model to cpu
428
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
429
+ 3. Load it into the provided model
430
+
431
+ Args:
432
+ - ``model``: the model object to update
433
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
434
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
435
+
436
+ Returns:
437
+ - ``model`: modified model
438
+
439
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
440
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
441
+ conveniently placed for you in the checkpoint folder.
442
+
443
+ A typical usage might be ::
444
+
445
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
446
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
447
+ # submit to model hub or save the model to share with others
448
+
449
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
450
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
451
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
452
+
453
+ """
454
+ logger.info(f"Extracting fp32 weights")
455
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
456
+
457
+ logger.info(f"Overwriting model with fp32 weights")
458
+ model = model.cpu()
459
+ model.load_state_dict(state_dict, strict=False)
460
+
461
+ return model
462
+
463
+
464
+ if __name__ == "__main__":
465
+
466
+ parser = argparse.ArgumentParser()
467
+ parser.add_argument(
468
+ "checkpoint_dir",
469
+ type=str,
470
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
471
+ parser.add_argument(
472
+ "output_file",
473
+ type=str,
474
+ help=
475
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
476
+ )
477
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
478
+ args = parser.parse_args()
479
+
480
+ debug = args.debug
481
+
482
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da2622d1fc7fd4f286bc5969b5c41d5b9fc1c68b054d356b8fb4c1234a332a0e
3
+ size 5363024236
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 2048,
22
+ "name_or_path": "EleutherAI/gpt-neo-1.3B",
23
+ "pad_token": null,
24
+ "special_tokens_map_file": null,
25
+ "tokenizer_class": "GPT2Tokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e1a0fcbf25720ed542bd10424c03d13a02ac8f5eff85f51e6389fe1f87d97f
3
+ size 4603
vocab.json ADDED
The diff for this file is too large to render. See raw diff